en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

马继政(1971-),男,江苏新沂人,副教授,博士,研究方向为运动生理学。

中图分类号:G807.4

文献标识码:A

文章编号:1008-3596(2015)02-0061-06

参考文献 1
Wilson J M,Marin P J,Rhea M R,et al.Concurrent training:a meta-analysis examining interference of aerobic and resistance exercises[J].J Strength Cond Res,2012(8):2293-2307.
参考文献 2
Docherty D,Sporer B.A proposed model for examining the interference phenomenon between concurrent aerobic and strength training[J].Sports Med,2000(6):385-394.
参考文献 3
Coffey V G,Hawley J A.The molecular bases of training adaptation[J].Sports Med,2007(9):737-763.
参考文献 4
Fyfe J J,Bishop D J,Stepto N K.Interference between Concurrent Resistance and Endurance Exercise:Molecular Bases and the Role of Individual Training Variables[J].Sports Med,2014(6):743-762.
参考文献 5
Aagaard P,Andersen J L.Effects of strength training on endurance capacity in top-level endurance athletes[J].Scand J Med Sci Sports,2010(2):39-47.
参考文献 6
Baar K.Training for endurance and strength:lessons from cell signaling[J].Med Sci Sports Exerc,2006(11):1939-1944.
参考文献 7
Thomson D M,Fick C A,Gordon S E.AMPK activation attenuates S6K1,4E-BP1,and eEF2 signaling responses to high-frequency electrically stimulated skeletal muscle contractions[J].J Appl Physiol,2008(3):625-632.
参考文献 8
Inoki K,Zhu T,Guan K L.TSC2 mediates cellular energy response to control cell growth and survival[J].Cell,2003(5):577-590.
参考文献 9
McGee S L,Mustard K J,Hardie D G,et al.Normal hypertrophy accompanied by phosphorylation and activation of AMP-activated protein kinase alpha1 following overload in LKB1 knockout mice[J].J Physiol,2008(6):1731-1741.
参考文献 10
Inoki K,Li Y,Zhu T,et al.TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signaling[J].Nat Cell Biol,2002(9):648-657.
参考文献 11
Sanchez A M,Csibi A,Raibon A,et al.AMPK promotes skeletal muscle autophagy through activation of forkhead FoxO3a and interaction with Ulk1[J].J Cell Biochem,2012(2):695-710.
参考文献 12
Rose A J,Frosig C,Kiens B,et al.Effect of endurance exercise training on Ca2+ calmodulin-dependent protein kinase II expression and signalling in skeletal muscle of humans[J].J Physiol,2007(2):785-795.
参考文献 13
Browne G J,Finn S G,Proud C G.Stimulation of the AMP-activated protein kinase leads to activation of eukaryotic elongation factor 2 kinase and to its phosphorylation at a novel site,serine398[J].J Biol Chem,2004(13):12220-12231.
参考文献 14
Favier F B,Costes F,Defour A,et al.Downregulation of Akt/mammalian target of rapamycin pathway in skeletal muscle is associated with increased REDD1 expression in response to chronic hypoxia[J].Am J Physiol Regul Integr Comp Physiol,2010(6):1659-1666.
参考文献 15
Philp A,Chen A,Lan D,et al.Sirtuin 1(SIRT1)deacetylase activity is not required for mitochondrial biogenesis or peroxisome proliferator-activated receptor-gamma coactivator-1alpha(PGC-1alpha)deacetylation following endurance exercise[J].J Biol Chem,2011(35):30561-30570.
参考文献 16
Coffey V G,Zhong Z,Shield A,et al.Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans[J].FASEB J,2006(1):190-192.
参考文献 17
Apro W,Wang L,Ponten M,et al.Resistance exercise induced mTORC1 signalling is not impaired by subsequent endurance exercise in human skeletal muscle[J].Am J Physiol Endocrinol Metab,2013(2):22-32.
参考文献 18
Carrithers J A,Carroll C C,Coker R H,et al.Concurrent exercise and muscle protein synthesis:implications for exercise countermeasures in space[J].Aviat Space Environ Med,2007(5):457-462.
参考文献 19
Wang L,Mascher H,Psilander N,et al.Resistance exercise enhances the molecular signaling of mitochondrial biogenesis induced by endurance exercise in human skeletal muscle[J].J Appl Physiol,2011(5):1335-1344.
参考文献 20
Lundberg T R,Fernandez-Gonzalo R,Gustafsson T,et al.Aerobic exercise alters skeletal muscle molecular responses to resistance exercise[J].Med Sci Sports Exerc,2012(9):1680-1688.
参考文献 21
Lundberg T R,Fernandez-Gonzalo R,Gustafsson T,et al.Aerobic exercise does not compromise muscle hypertrophy response to short-term resistance training[J].J Appl Physiol,2013(1):81-89.
参考文献 22
Lundberg T R,Fernandez-Gonzalo R,Tesch P A.Exercise-induced AMPK activation does not interfere with muscle hypertrophy in response to resistance training in men[J].J Appl Physiol,2014(6):611-620.
参考文献 23
de Souza E O,Tricoli V,Roschel H,et al.Molecular adaptations to concurrent training[J].Int J Sports Med,2013(3):207-213.
参考文献 24
de Souza E O,Tricoli V,Aoki M S,et al.Effects of concurrent strength and endurance training on genes related to myostatin signaling pathway and muscle fiber responses[J].J Strength Cond Res,2014(11):3215-3223.
参考文献 25
Baar K,Esser K.Phosphorylation of p70S6k correlates with increased skeletal muscle mass following resistance exercise[J].Am J Physiol,1999(1):120-127.
参考文献 26
Terzis G,Georgiadis G,Stratakos G,et al.Resistance exercise induced increase in muscle mass correlates with p70S6 kinase phosphorylation in human subjects[J].Eur J Appl Physiol,2008(2):145-152.
参考文献 27
Drummond M J,Fry C S,Glynn E L,et al.Skeletal muscle amino acid transporter expression is increased in young and older adults following resistance exercise[J].J Appl Physiol,2011(1):135-142.
参考文献 28
Hickson R C.Interference of strength development by simultaneously training for strength and endurance[J].Eur J Appl Physiol Occup Physiol,1980(3):255-263.
参考文献 29
Cochran A J,Little J P,Tarnopolsky M A,et al.Carbohydrate feeding during recovery alters the skeletal muscle metabolic response to repeated sessions of high-intensity interval exercise in humans[J].J Appl Physiol,2010(3):628-636.
参考文献 30
Areta J L,Burke L M,Ross M L,et al.Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myo brillar protein synthesis[J].J Physiol,2013(9):2319-2331.
参考文献 31
Camera D M,West D W,Phillips S M,et al.Protein Ingestion Increases Myofibrillar Protein Synthesis after Concurrent Exercise[J].Med Sci Sports Exerc,2014(6):27-30.
参考文献 32
Wojtaszewski J F,MacDonald C,Nielsen J N,et al.Regulation of 5’AMP-activated protein kinase activity and substrate utilization in exercising human skeletal muscle[J].Am J Physiol Endocrinol Metab,2003(4):813-822.
参考文献 33
Deldicque L,Atherton P,Patel R,et al.Decrease in Akt/PKB signalling in human skeletal muscle by resistance exercise[J].Eur J Appl Physiol,2008(1):57-65.
参考文献 34
Bentley D J,Zhou S,Davie A J.The effect of endurance exercise on muscle force generating capacity of the lower limbs[J].J Sci Med Sport,1998(3):179-188.
参考文献 35
Jentjens R,Jeukendrup A.Determinants of post-exercise glycogen synthesis during short-term recovery[J].Sports Med,2003(2):117-144.
参考文献 36
Chen Z P,McConell G K,Michell B J,et al.AMPK signaling in contracting human skeletal muscle:acetyl-CoA carboxylase and NO synthase phosphorylation[J].Am J Physiol Endocrinol Metab,2000(5):1202-1206.
参考文献 37
Gollnick P D,Piehl K,Saltin B.Selective glycogen depletion pattern in human muscle bres after exercise of varying intensity and at varying pedalling rates[J].J Physiol,1974(1):45-57.
参考文献 38
Cadore E L,Pinto R S,Bottaro M,et al.Strength and endurance training prescription in healthy and frail elderly[J].Aging Dis,2014(3):183-195.
参考文献 39
García-Pallarés J,Izquierdo M.Strategies to optimize concurrent training of strength and aerobic fitness for rowing and canoeing[J].Sports Med,2011(4):329-343.
目录contents

    摘要

    力量训练和耐力训练对人体表型的影响不同。长期力量训练能促进肌肉激活和肥大,提高肌肉最大收缩能力,耐力训练则增加线粒体的密度和肌纤维氧化能力,从而整体提高最大摄氧量。但是,在同时提高外周肌肉肥大和肌肉有氧氧化功率时(力量和耐力组合训练),可能会抑制肌肉肥大。动物实验表明,这些潜在分子干扰机制涉及与力量训练相关的雷帕霉素复合物1(mTORC1)信号通路以及耐力训练相关的5’-AMP依赖的蛋白激酶(5’-AMPK)和Ca2+/钙调素依赖性蛋白激酶Ⅱ(CaMKⅡ)信号通路。由于力量和耐力组合训练的变量较多,目前对于人体实验是否存在信号途径间的干扰现象还未得到证实,但从组合训练实践看,高水平运动员在训练后期更倾向于避免同时发展外周的局部肌肉肥大和有氧氧化能力。

    Abstract

    The influences of strength training and endurance training on human phenotype are hugely different. Long-term strength training can promote muscle activation and mast, increase the largest muscle contractility; endurance training can increase the density of mitochondria and the oxidative capacity of muscle fibers, thereby improve the overall maximum oxygen uptake. But while improving peripheral muscle hypertrophy and muscle power during aerobic oxidation (a combination of strength and endurance training), the process may inhibit muscle hypertrophy. Animal experiments shows that these potentially interfering mechanism is mainly concerned with the signaling pathway of strength training related to mTORC1 and endurance training related to 5’-AMPK which 5’-AMP depends on, and Ca2+/CaMKⅡ signaling pathway. Due to a large amount of variables by a combination of strength and endurance training, currently whether human body experiments have interference between signaling pathways has not been confirmed, but from the combination of training practice, high-level athletes after training are more likely to avoid the simultaneous development of the latter part of the outer periphery of the local muscle hypertrophy and aerobic oxidation.

  • 力量和耐力训练代表着两种不同运动方式。骨骼肌的适应具有运动方式高度特异。长期力量训练促进肌肉激活和肥大,提高最大收缩能力,而耐力训练增加线粒体的密度和肌纤维氧化能力,整体上提高最大摄氧量(VO2max)。当前,在一次训练课中,力量和耐力训练相结合的训练方式被称为力量和耐力组合训练(Concurrent strength and endurance training)[1]。尽管力量和耐力组合训练可能获得大范围广谱上的益处,但研究证据显示与单独进行的力量训练相比,力量和耐力组合训练可抑制肌肉肥大、力量和爆发力。大量研究企图阐述“训练中可能存在分子干扰机制”[2-4],提出的主要假说认为:力量训练和耐力训练激活不同的分子信号通路,特别是耐力训练激活的多种信号分子可直接或间接抑制骨骼肌肥大信号,最终延缓或抑制蛋白的合成[3-4]。但是,到目前为止仍不清楚其中的变化机制,其原因是多方面的,例如,耐力训练可能减少力量训练的质量(疲劳/消耗底物),也可能抑制力量训练介导肌纤维肥大的相关信号分子。力量和耐力组合训练有着很重要的现实意义,也是目前国外训练研究领域中较为关注的一个问题。

  • 1 力量和耐力组合训练和干扰效应分子基础

  • 力量和耐力运动模式均可导致骨骼肌产生阳性适应,促进一些功能和代谢上的障碍患者康复,如肌肉减少症、Ⅱ型糖尿病和肥胖。在预防其他一些疾病方面,力量和耐力组合训练可能是一个具有吸引力的训练策略。另外,一些运动项目需要组合训练,即提高力量、爆发力、肌肉肥大同时又希望提高有氧能力。尽管力量和耐力组合训练具有潜在的益处,但Hickson在1980年首次提出:与单一力量训练相比,组合训练会抑制力量训练的适应,这一现象被描述为“干扰效应”[2]。传统上,最大力量训练(强度>85%1RM)和最大爆发力训练主要诱导中枢适应,包括增加运动单位放电频率、提高协同能力,募集高阈值运动单位,降低拮抗肌共收缩,降低肌肉的代谢水平。肌肉局部肥大或整体肥大需要强度范围在70%-80%1RM,主要诱导外周适应。强调增加收缩蛋白的合成,影响肌纤维大小、肌肉横断面积以及糖酵解酶活性。这些训练刺激可导致毛细血管和线粒体密度下降。耐力训练强度接近VO2max或达到VO2max主要诱导外周适应,包括增加肌糖原的储备、毛细血管和线粒体的密度以及氧化酶的活性。低或中等强度有氧训练,通常和无氧阈提高有关,主要诱导中枢适应,如肺扩散、血红蛋白的亲和性、增加血容量和心输出量。在此基础上,2000年Docherty等人[2]提出了力量和耐力组合训练产生干扰现象的一个理论模型(图1)。该模型表明应避免结合以肌肉肥大为目标的力量训练和以提高最大有氧能力为目标的耐力训练,两种模式的训练在外周诱导相反的生理适应。相反,耐力训练强度在70%—80%VO2max与力量训练肌肉肥大计划产生干扰较小。此外,力量训练对耐力训练的成绩和VO2max影响较小或无负性变化。尽管,与单独耐力训练相比,组合训练时耐力训练成绩受到影响,但是,组合训练可通过提高神经肌肉功能和运动经济性提高短距离(<15min)和长距离(>30min)耐力训练的成绩[5]

  • 1.1 力量和耐力训练特异的分子适应机制

  • 由于力量和耐力训练固有特性,长期训练可激活各自特定信号通路和基因网络[3-4]。长期力量训练最典型特点为肌肉肥大,一次急性力量训练,蛋白净合成率可持续48h。一般认为肌肉肥大适应机制和雷帕霉素复合物1(mTORC1)信号通路有关。mTORC1整合机械刺激、生长因子和营养物等信号,通过磷酸化下游目标蛋白——核糖体蛋白S6激酶1(p70S6K)和真核起始因子4E(eIF-4E)结合蛋白1(4E-BP1)促进净蛋白的合成[3-4]。而耐力训练典型特点是强度较低,持续活动时间较长,对肌肉代谢能力要求非常高,包括细胞内Ca2+、氧、乳酸、活性氧(ROS)、一磷酸腺苷(AMP)和三磷酸腺苷(ATP)比值以及烟酰胺腺嘌呤二核苷酸(NAD+)和烟酰胺腺嘌呤二核苷酸还原形态(NADH)比值增加,这些刺激物启动细胞内信号通路,包括5’-AMP依赖的蛋白激酶(5’-AMPK)和Ca2+/钙调素依赖性蛋白激酶Ⅱ(CaMKⅡ)信号通路,共同作用于过氧化物酶体增殖物受体γ共激活因子1α(PGC-1α),促进线粒体的生物合成以及其他方面的适应,包括底物利用、毛细血管的密度,从而整体提高氧化能力[3-4]

  • 图1 力量和耐力训练相互干扰的理论模式示意图

  • 1.2 力量和耐力组合训练干扰效应的分子基础

  • 目前对于耐力训练特异适应机制并不完全清楚。耐力训练涉及多种信号反应,能抑制蛋白合成和刺激蛋白降解(图2)。研究推测力量训练需要净蛋白的合成率,组合训练时,耐力训练引起拮抗反应,可能会限制肌纤维肥大[3-4]

  • 目前,研究假设认为这种干扰效应主要涉及AMPK(耐力训练)和mTORC1(力量训练)信号通路。一些研究证据表明AMPK激活可抑制mTORC1和其下游信号目标,从而负性调节蛋白合成和肥大[3,6]。动物实验表明AMPK磷酸化和骨骼肌肥大呈负相关[7]。体外实验表明激活的AMPK可通过多种途径抑制mTORC1,包括直接磷酸化结节硬化复合物2(TSC2)和mTORC1相关的调节蛋白(raptor),被AMPK激活的TSC2可通过抑制其上游小G蛋白Ras的同源蛋白(Rheb),负调控mTORC1,阻滞其下游p70S6K和4E-BP1激活,随后抑制蛋白的合成[8-9]。AKt作用相反,可磷酸化TSC2,使其失活,减缓对mTORC1抑制[10]。AMPK调节mTORC1似乎存在异构体特异性:催化型AMPK-a1主要负责限制肌肉肥大,AMPK-a1调节骨骼肌代谢上的适应[9]。除了抑制蛋白合成外,激活的AMPK可通过泛素—蛋白酶体和自噬体—溶酶体系统,促进蛋白的降解。激活的AMPK促进叉头蛋白(FoxOs)依赖性的肌萎缩Fbox-1蛋白(MaFbx-1)和肌肉环指蛋白1(MuRF-1)转录,解除mTORC1对Unc51样激酶1(ULK1)抑制,增加ULK1活性,形成自噬诱导[11]

  • 图2 耐力训练激活的抑制肌纤维肥大潜在的分子信号通路[4]

  • 在蛋白转录合成阶段需要消耗能量,并受延长因子调节。真核延长因子2(eEF2)起到关键的作用。eEF2激酶(eEF2K)可磷酸化eEF2,致其失活。AMPK和CaMK可激活eEF2K。耐力训练可激活AMPK和CaMK[12]。相反,和力量训练相关信号通路如mTORC1和p70S6K激活,抑制eEF2K活性,减缓eEF2K对eEF2抑制,增加蛋白合成率。在组合训练中,耐力训练激活eEF2K可能参与抑制蛋白合成和肌肉肥大[13]。另外,mTORC1上游抑制剂是发育及DNA损伤反应调节基因1(REDD1)。一些代谢应激如ATP消耗和低氧可激活REDD1[14]。在组合训练中,耐力训练可激活REDD1,从而抑制力量训练诱导合成代谢,以及肌肉肥大[14]。此外,第3个可能的机制涉及SIRT1(sirtuin1)蛋白,一种保守的NAD+依赖的组蛋白/非组蛋白去乙酰基酶。耐力训练可激活SIRT1,激活的SIRT1可激活mTORC1下游蛋白TSC2,从而抑制蛋白的合成[15]。但这些潜在干扰机制研究大部分来源于细胞和动物实验,与实际应用仍存在一定的差距。

  • 2 组合训练产生分子干扰效应的人体试验证据和其局限性

  • 2.1 急性组合训练分子干扰效应

  • 目前,对于急性人体试验是否存在干扰仍有争议。一些研究认为组合训练可干扰蛋白的合成[16],另一些研究认为与单独力量训练相比,蛋白合成率和mTORC1信号通路并无变化[17-18]。此外,一些研究还发现,力量训练后立即进行耐力训练可增强线粒体生物合成相关的信号通路[19],耐力训练6h后,进行力量训练可增强蛋白合成信号[20]

  • 2.2 短期组合训练分子干扰效应

  • 关于长周期性组合训练分子适应机制相关研究很少,Lundberg等人[21]研究表明与单独力量训练相比,5周组合训练可增加有氧能力和肌肉体积。该研究进一步表明5周组合训练激活AMPK,也没有减缓肌肉肥大程度。但是,组合训练抑制肌肉功能,即未能增加肌肉的向心力量[22],表明力量训练的训练学参数可能影响和改变组合训练的效果。de Souza等人[23-24]研究表明,但8周组合训练并没有减缓肌肉肥大程度和力量的增加,也没有改变最后一次训练48h后的肌肉生长抑制素(MSTN)和其相关的调节基因mRNA,以及肌肉横截面积和力量。但是,应考虑到这些短期训练方案是否能引起训练干扰效应,以及是否还存在一些不清楚的关键信号分子。

  • 2.3 现存研究证据的局限性

  • 2.3.1 急性反应和长期训练上的适应

  • 急性研究可提供组合训练时分子调节变化上的规律。但是,关于长期组合训练分子适应和干扰机制仍存在大量的未能解决的问题。急性分子反应和长期训练诱导表型变化之间直接关系是缺失的或有限的。因此,组合训练急性分子变化能否提供有效证据,能够代表长期表型上适应和潜在干扰现象,仍不能确定。目前为止,mTORC1信号通路和蛋白合成率之间是否存在线性关系也存在争论。但是,动物和人体研究同时发现,力量训练后,p70S6K的磷酸化和骨骼肌肥大呈线性相关,表明p70S6K可作为骨骼肌肥大生物标志物,同时可作为组合训练时潜在分子干扰标志物[25-26]。差异原因可能和mTORC1信号通路效应持续时间有关,mTORC1信号通路效应可持续24h,而其中的一些研究仅观察训练后4h内的变化[27],很可能忽略一些重要信息。

  • 2.3.2 急性反应与训练水平

  • 显而易见,一段时期训练可调节急性反应,类似于单一急性模式。然而,对于不习惯练习,急性变化可能代表着一般的、不精确适应变化。例如,对于未经过训练的受试者,力量训练和耐力训练激活mTORC1信号通路不存在差异。但经过训练的受试对象,仅力量训练能够激活mTORC1信号通路。另外,未经过训练的受试者力量训练初期可相容性增加肌纤维和线粒体蛋白的合成率。随着训练持续,这些分子反应更加精确,力量训练后仅肌纤维蛋白合成率增加。长期的力量和耐力训练运动员研究资料同样支持肌肉表型影响分子急性反应[16]。Hickson[28]最初研究发现组合训练直到第8周才出现干扰现象。但目前缺少长周期组合训练(>8周)人体相关实验研究。

  • 2.3.3 营养物可利用性

  • 营养物可利用性可对人体骨骼肌适应产生较大的影响,可调节骨骼肌急性和长期适应,例如,低碳水化合物能够促进早期信号反应,调节代谢上适应和线粒体的生物合成,低肌糖原和疲劳的发展有关,增加AMPK的活性,可抑制力量训练诱导合成反应[29]。在禁食状态下,进行练习很可能对骨骼肌产生较大代谢上应激,增加能量敏感性激酶(如AMPK和eEF2k)的活性,从而有能力抑制蛋白的合成。补充氨基酸可独立激活mTORC1,表明充分的营养物可减缓对耐力训练产生负性的影响,增加蛋白的合成率[30]。Camera等人[31]研究表明,组合训练增加人体骨骼肌蛋白合成反应,促进代谢/氧化相关的mRNA的表达,组合训练后补充氨基酸可增强肌纤蛋白合成率,减缓肌肉分解代谢的标志物,表明营养物可利用性能够影响组合训练生物适应过程。

  • 3 组合训练的训练学参数与干扰的效应

  • 目前,这些训练学上的变量对急性和长期组合训练产生的影响和幅度并不清楚。一些变量可能加大组合训练中干扰:间接或直接通过蛋白活动作用,抑制蛋白合成/增加蛋白分解(图3)。认识这些训练变量可同时发展肌肉的质量、力量和耐力。

  • 图3 组合训练训练变量产生潜在影响的理论框架[4]

  • 3.1 训练课内组合练习的顺序

  • 如果耐力训练引起疲劳或底物耗竭,可影响后期力量训练的质量,如果先进行力量训练可能有助于缓解这一负性的影响,但是,耐力训练激活的代谢信号反应(如AMPK的激活)抑制蛋白合成时间相对较短<3h[32],而力量训练激活的合成信号反应(如mTOR和p70S6K的激活)持续时间相对较长>24h[33]。耐力训练后进行力量训练,在恢复期的早期,合成代谢可顺利进行。但是,这种现象目前还缺少相关的人体研究。

  • 3.2 力量和耐力训练之间隔时间

  • 耐力训练和力量训练之间隔时间是一个非常重要的因素。耐力训练引起的疲劳或底物(肌糖原)消耗可负性影响力量、爆发力生成以及合成信号的反应。例如,一次急性耐力训练后,经过训练的肌群在6h内,力量生成降低;在24h内,恢复到基础值[34]。从理论上分析,受抑制力量生成将限制高阈值运动单位(肌纤维Ⅱx/IIb)的激活。而力量训练后,mTORC1和p70S6K磷酸化主要表现在Ⅱ型肌纤维,从而潜在限制肌肉肥大。另外,耐力训练激活的蛋白抑制蛋白的合成和调节蛋白的降解,表明耐力训练后紧接着进行力量训练,会抑制力量训练激活的蛋白合成[4]。而组合练习之间的充分恢复可减缓潜在的干扰效应。在耐力训练后补充碳水化合物/氨基酸,恢复肌糖原,可抵消耐力训练产生的影响和蛋白的合成[31,35]。Wilson等人[1]分析时发现,与一天内同时完成力量和耐力训练相比,间隔1天进行力量和耐力训练,其趋向肥大。目前,实验采用的间隔时间通常较短(15-30min),而长间隔研究较少。

  • 3.3 耐力训练的强度、量和方式

  • 3.3.1 耐力训练的强度

  • 耐力训练强度也是一个重要参数,但是大部分研究采用低到中等强度的耐力训练方案(30-60min,60%-70%VO2max;40-90min,50%-70%VO2max)。前期研究表明,一些负调控蛋白合成的分子物质活性,具有耐力训练强度的依赖性[36]。如大强度耐力训练才能激活催化型AMPK-a1[36]。另外,大强度耐力训练糖原消耗的增加主要发生在II型肌纤维[37]。目前,尚缺少和理论模型一致的训练方案验证组合训练中分子变化及干扰机制。

  • 3.3.2 耐力训练的量

  • 耐力训练的总量可能是影响分子产生干扰的主要因素。前期研究表明,每周训练≤2次不会产生干扰,而每周训练≥3次可抑制最大力量发展[1]。但是,目前需要确认的是周训练耐力总量,还是训练次数更为关键。如果耐力训练总量非常关键,可是低训练量的大强度间歇训练产生的代谢适应,以及运动能力与传统的耐力训练相似,那么,在组合训练中,采用低训练量的大强度间歇训练可能减少由耐力训练总量引起的分子间产生的干扰,从而提高运动能力。

  • 3.3.3 耐力训练的方式

  • 耐力训练方式也可能影响干扰机制,研究表明跑步产生的干扰效应大于自行车[1]。但是,尚不清楚其中的原因。

  • 3.4 力量训练的强度、量和方式

  • 力量训练的强度、量和方式影响骨骼肌适应过程。通过调整力量训练的变量,力量训练可提高肌肉耐力、肥大程度、爆发力和最大力量。尽管已知力量训练是肌肉肥大强效刺激物,但并不清楚这一生物适应过程是如何完成的。

  • 4 组合训练现实应用和训练上的策略

  • 鉴于动物实验和人体实验存在的巨大差异,目前组合训练在实际应用中,仍存在较大争议。但是,相关的研究建议也给我们提供了非常有用的信息。如组合训练在老年人中的应用方面,Cadore等人[38]认为在对抗老龄化机体功能衰退过程中,中等强度力量和中等强度耐力组合训练是老年人群提高神经肌肉和心肺功能的最佳训练方式。当前,组合训练在赛艇和皮划艇训练上研究相对较多,García-Pallarés和Izquierdo[39]分析相关研究总结了组合训练在运动项目中实际应用的5点建议:

  • (1)短期训练(5周),采用高负荷的组合训练可有效提高高水平运动员的成绩。

  • (2)每周3次力量训练可能获得最佳的训练刺激,保证肌肉和爆发力获得阳性适应,也能够减少干扰现象。为了获得最佳力量训练上的适应,或避免过度训练,其训练组数和次数应进行个体化调整。训练量接近3-5组,每组重复4-6次的专项或多关节力量训练,持续10-12周训练周期,可能保证运动员获得充分训练刺激。

  • (3)避免同时发展局部的肌肉肥大和有氧功率,减少干扰效应。在相同的外周两者可产生相反的适应机制。

  • (4)耐力训练引起的机体疲劳可降低后续力量训练的质量和数量,力量训练应安排在耐力训练前进行,或至少应间隔8h。进行额外的次最大强度耐力训练,涉及主要非专项的肌群可保证高水平运动员获得肌肉外周适应,同时,训练强度增加有助于专项肌群的恢复。

  • (5)避免力量训练重复至力竭这一方法,采用中等组数,每组重复一定次数,可提供适宜的应激环境,能够更大程度增强力量、爆发力和运动成绩,并有助于从力量训练中迅速恢复,保证运动员后续耐力训练的质量。

  • 5 小结

  • 力量和耐力组合训练的实际应用很广泛,涉及各种人群的健康锻炼和对力量和耐力要求非常高的运动项目。力量和耐力组合训练产生干扰这一问题已提出30余年,但是,目前人体实验研究数据仍十分有限,其研究结果与动物实验存在冲突。对于以健康为目的身体锻炼,力量和耐力组合训练可能非常有效,但对于运动竞技项目来而言,组合训练应依据项目的特定需求进行设计,不同的组合方式是值得关注和考虑的,研究更倾向于长期组合训练可能存在干扰现象。随着研究的不断深入,该问题的解决(有或无)非常有助于精确设计训练计划。

  • 参考文献

    • [1] Wilson J M,Marin P J,Rhea M R,et al.Concurrent training:a meta-analysis examining interference of aerobic and resistance exercises[J].J Strength Cond Res,2012(8):2293-2307.

    • [2] Docherty D,Sporer B.A proposed model for examining the interference phenomenon between concurrent aerobic and strength training[J].Sports Med,2000(6):385-394.

    • [3] Coffey V G,Hawley J A.The molecular bases of training adaptation[J].Sports Med,2007(9):737-763.

    • [4] Fyfe J J,Bishop D J,Stepto N K.Interference between Concurrent Resistance and Endurance Exercise:Molecular Bases and the Role of Individual Training Variables[J].Sports Med,2014(6):743-762.

    • [5] Aagaard P,Andersen J L.Effects of strength training on endurance capacity in top-level endurance athletes[J].Scand J Med Sci Sports,2010(2):39-47.

    • [6] Baar K.Training for endurance and strength:lessons from cell signaling[J].Med Sci Sports Exerc,2006(11):1939-1944.

    • [7] Thomson D M,Fick C A,Gordon S E.AMPK activation attenuates S6K1,4E-BP1,and eEF2 signaling responses to high-frequency electrically stimulated skeletal muscle contractions[J].J Appl Physiol,2008(3):625-632.

    • [8] Inoki K,Zhu T,Guan K L.TSC2 mediates cellular energy response to control cell growth and survival[J].Cell,2003(5):577-590.

    • [9] McGee S L,Mustard K J,Hardie D G,et al.Normal hypertrophy accompanied by phosphorylation and activation of AMP-activated protein kinase alpha1 following overload in LKB1 knockout mice[J].J Physiol,2008(6):1731-1741.

    • [10] Inoki K,Li Y,Zhu T,et al.TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signaling[J].Nat Cell Biol,2002(9):648-657.

    • [11] Sanchez A M,Csibi A,Raibon A,et al.AMPK promotes skeletal muscle autophagy through activation of forkhead FoxO3a and interaction with Ulk1[J].J Cell Biochem,2012(2):695-710.

    • [12] Rose A J,Frosig C,Kiens B,et al.Effect of endurance exercise training on Ca2+ calmodulin-dependent protein kinase II expression and signalling in skeletal muscle of humans[J].J Physiol,2007(2):785-795.

    • [13] Browne G J,Finn S G,Proud C G.Stimulation of the AMP-activated protein kinase leads to activation of eukaryotic elongation factor 2 kinase and to its phosphorylation at a novel site,serine398[J].J Biol Chem,2004(13):12220-12231.

    • [14] Favier F B,Costes F,Defour A,et al.Downregulation of Akt/mammalian target of rapamycin pathway in skeletal muscle is associated with increased REDD1 expression in response to chronic hypoxia[J].Am J Physiol Regul Integr Comp Physiol,2010(6):1659-1666.

    • [15] Philp A,Chen A,Lan D,et al.Sirtuin 1(SIRT1)deacetylase activity is not required for mitochondrial biogenesis or peroxisome proliferator-activated receptor-gamma coactivator-1alpha(PGC-1alpha)deacetylation following endurance exercise[J].J Biol Chem,2011(35):30561-30570.

    • [16] Coffey V G,Zhong Z,Shield A,et al.Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans[J].FASEB J,2006(1):190-192.

    • [17] Apro W,Wang L,Ponten M,et al.Resistance exercise induced mTORC1 signalling is not impaired by subsequent endurance exercise in human skeletal muscle[J].Am J Physiol Endocrinol Metab,2013(2):22-32.

    • [18] Carrithers J A,Carroll C C,Coker R H,et al.Concurrent exercise and muscle protein synthesis:implications for exercise countermeasures in space[J].Aviat Space Environ Med,2007(5):457-462.

    • [19] Wang L,Mascher H,Psilander N,et al.Resistance exercise enhances the molecular signaling of mitochondrial biogenesis induced by endurance exercise in human skeletal muscle[J].J Appl Physiol,2011(5):1335-1344.

    • [20] Lundberg T R,Fernandez-Gonzalo R,Gustafsson T,et al.Aerobic exercise alters skeletal muscle molecular responses to resistance exercise[J].Med Sci Sports Exerc,2012(9):1680-1688.

    • [21] Lundberg T R,Fernandez-Gonzalo R,Gustafsson T,et al.Aerobic exercise does not compromise muscle hypertrophy response to short-term resistance training[J].J Appl Physiol,2013(1):81-89.

    • [22] Lundberg T R,Fernandez-Gonzalo R,Tesch P A.Exercise-induced AMPK activation does not interfere with muscle hypertrophy in response to resistance training in men[J].J Appl Physiol,2014(6):611-620.

    • [23] de Souza E O,Tricoli V,Roschel H,et al.Molecular adaptations to concurrent training[J].Int J Sports Med,2013(3):207-213.

    • [24] de Souza E O,Tricoli V,Aoki M S,et al.Effects of concurrent strength and endurance training on genes related to myostatin signaling pathway and muscle fiber responses[J].J Strength Cond Res,2014(11):3215-3223.

    • [25] Baar K,Esser K.Phosphorylation of p70S6k correlates with increased skeletal muscle mass following resistance exercise[J].Am J Physiol,1999(1):120-127.

    • [26] Terzis G,Georgiadis G,Stratakos G,et al.Resistance exercise induced increase in muscle mass correlates with p70S6 kinase phosphorylation in human subjects[J].Eur J Appl Physiol,2008(2):145-152.

    • [27] Drummond M J,Fry C S,Glynn E L,et al.Skeletal muscle amino acid transporter expression is increased in young and older adults following resistance exercise[J].J Appl Physiol,2011(1):135-142.

    • [28] Hickson R C.Interference of strength development by simultaneously training for strength and endurance[J].Eur J Appl Physiol Occup Physiol,1980(3):255-263.

    • [29] Cochran A J,Little J P,Tarnopolsky M A,et al.Carbohydrate feeding during recovery alters the skeletal muscle metabolic response to repeated sessions of high-intensity interval exercise in humans[J].J Appl Physiol,2010(3):628-636.

    • [30] Areta J L,Burke L M,Ross M L,et al.Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myo brillar protein synthesis[J].J Physiol,2013(9):2319-2331.

    • [31] Camera D M,West D W,Phillips S M,et al.Protein Ingestion Increases Myofibrillar Protein Synthesis after Concurrent Exercise[J].Med Sci Sports Exerc,2014(6):27-30.

    • [32] Wojtaszewski J F,MacDonald C,Nielsen J N,et al.Regulation of 5’AMP-activated protein kinase activity and substrate utilization in exercising human skeletal muscle[J].Am J Physiol Endocrinol Metab,2003(4):813-822.

    • [33] Deldicque L,Atherton P,Patel R,et al.Decrease in Akt/PKB signalling in human skeletal muscle by resistance exercise[J].Eur J Appl Physiol,2008(1):57-65.

    • [34] Bentley D J,Zhou S,Davie A J.The effect of endurance exercise on muscle force generating capacity of the lower limbs[J].J Sci Med Sport,1998(3):179-188.

    • [35] Jentjens R,Jeukendrup A.Determinants of post-exercise glycogen synthesis during short-term recovery[J].Sports Med,2003(2):117-144.

    • [36] Chen Z P,McConell G K,Michell B J,et al.AMPK signaling in contracting human skeletal muscle:acetyl-CoA carboxylase and NO synthase phosphorylation[J].Am J Physiol Endocrinol Metab,2000(5):1202-1206.

    • [37] Gollnick P D,Piehl K,Saltin B.Selective glycogen depletion pattern in human muscle bres after exercise of varying intensity and at varying pedalling rates[J].J Physiol,1974(1):45-57.

    • [38] Cadore E L,Pinto R S,Bottaro M,et al.Strength and endurance training prescription in healthy and frail elderly[J].Aging Dis,2014(3):183-195.

    • [39] García-Pallarés J,Izquierdo M.Strategies to optimize concurrent training of strength and aerobic fitness for rowing and canoeing[J].Sports Med,2011(4):329-343.

  • 参考文献

    • [1] Wilson J M,Marin P J,Rhea M R,et al.Concurrent training:a meta-analysis examining interference of aerobic and resistance exercises[J].J Strength Cond Res,2012(8):2293-2307.

    • [2] Docherty D,Sporer B.A proposed model for examining the interference phenomenon between concurrent aerobic and strength training[J].Sports Med,2000(6):385-394.

    • [3] Coffey V G,Hawley J A.The molecular bases of training adaptation[J].Sports Med,2007(9):737-763.

    • [4] Fyfe J J,Bishop D J,Stepto N K.Interference between Concurrent Resistance and Endurance Exercise:Molecular Bases and the Role of Individual Training Variables[J].Sports Med,2014(6):743-762.

    • [5] Aagaard P,Andersen J L.Effects of strength training on endurance capacity in top-level endurance athletes[J].Scand J Med Sci Sports,2010(2):39-47.

    • [6] Baar K.Training for endurance and strength:lessons from cell signaling[J].Med Sci Sports Exerc,2006(11):1939-1944.

    • [7] Thomson D M,Fick C A,Gordon S E.AMPK activation attenuates S6K1,4E-BP1,and eEF2 signaling responses to high-frequency electrically stimulated skeletal muscle contractions[J].J Appl Physiol,2008(3):625-632.

    • [8] Inoki K,Zhu T,Guan K L.TSC2 mediates cellular energy response to control cell growth and survival[J].Cell,2003(5):577-590.

    • [9] McGee S L,Mustard K J,Hardie D G,et al.Normal hypertrophy accompanied by phosphorylation and activation of AMP-activated protein kinase alpha1 following overload in LKB1 knockout mice[J].J Physiol,2008(6):1731-1741.

    • [10] Inoki K,Li Y,Zhu T,et al.TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signaling[J].Nat Cell Biol,2002(9):648-657.

    • [11] Sanchez A M,Csibi A,Raibon A,et al.AMPK promotes skeletal muscle autophagy through activation of forkhead FoxO3a and interaction with Ulk1[J].J Cell Biochem,2012(2):695-710.

    • [12] Rose A J,Frosig C,Kiens B,et al.Effect of endurance exercise training on Ca2+ calmodulin-dependent protein kinase II expression and signalling in skeletal muscle of humans[J].J Physiol,2007(2):785-795.

    • [13] Browne G J,Finn S G,Proud C G.Stimulation of the AMP-activated protein kinase leads to activation of eukaryotic elongation factor 2 kinase and to its phosphorylation at a novel site,serine398[J].J Biol Chem,2004(13):12220-12231.

    • [14] Favier F B,Costes F,Defour A,et al.Downregulation of Akt/mammalian target of rapamycin pathway in skeletal muscle is associated with increased REDD1 expression in response to chronic hypoxia[J].Am J Physiol Regul Integr Comp Physiol,2010(6):1659-1666.

    • [15] Philp A,Chen A,Lan D,et al.Sirtuin 1(SIRT1)deacetylase activity is not required for mitochondrial biogenesis or peroxisome proliferator-activated receptor-gamma coactivator-1alpha(PGC-1alpha)deacetylation following endurance exercise[J].J Biol Chem,2011(35):30561-30570.

    • [16] Coffey V G,Zhong Z,Shield A,et al.Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans[J].FASEB J,2006(1):190-192.

    • [17] Apro W,Wang L,Ponten M,et al.Resistance exercise induced mTORC1 signalling is not impaired by subsequent endurance exercise in human skeletal muscle[J].Am J Physiol Endocrinol Metab,2013(2):22-32.

    • [18] Carrithers J A,Carroll C C,Coker R H,et al.Concurrent exercise and muscle protein synthesis:implications for exercise countermeasures in space[J].Aviat Space Environ Med,2007(5):457-462.

    • [19] Wang L,Mascher H,Psilander N,et al.Resistance exercise enhances the molecular signaling of mitochondrial biogenesis induced by endurance exercise in human skeletal muscle[J].J Appl Physiol,2011(5):1335-1344.

    • [20] Lundberg T R,Fernandez-Gonzalo R,Gustafsson T,et al.Aerobic exercise alters skeletal muscle molecular responses to resistance exercise[J].Med Sci Sports Exerc,2012(9):1680-1688.

    • [21] Lundberg T R,Fernandez-Gonzalo R,Gustafsson T,et al.Aerobic exercise does not compromise muscle hypertrophy response to short-term resistance training[J].J Appl Physiol,2013(1):81-89.

    • [22] Lundberg T R,Fernandez-Gonzalo R,Tesch P A.Exercise-induced AMPK activation does not interfere with muscle hypertrophy in response to resistance training in men[J].J Appl Physiol,2014(6):611-620.

    • [23] de Souza E O,Tricoli V,Roschel H,et al.Molecular adaptations to concurrent training[J].Int J Sports Med,2013(3):207-213.

    • [24] de Souza E O,Tricoli V,Aoki M S,et al.Effects of concurrent strength and endurance training on genes related to myostatin signaling pathway and muscle fiber responses[J].J Strength Cond Res,2014(11):3215-3223.

    • [25] Baar K,Esser K.Phosphorylation of p70S6k correlates with increased skeletal muscle mass following resistance exercise[J].Am J Physiol,1999(1):120-127.

    • [26] Terzis G,Georgiadis G,Stratakos G,et al.Resistance exercise induced increase in muscle mass correlates with p70S6 kinase phosphorylation in human subjects[J].Eur J Appl Physiol,2008(2):145-152.

    • [27] Drummond M J,Fry C S,Glynn E L,et al.Skeletal muscle amino acid transporter expression is increased in young and older adults following resistance exercise[J].J Appl Physiol,2011(1):135-142.

    • [28] Hickson R C.Interference of strength development by simultaneously training for strength and endurance[J].Eur J Appl Physiol Occup Physiol,1980(3):255-263.

    • [29] Cochran A J,Little J P,Tarnopolsky M A,et al.Carbohydrate feeding during recovery alters the skeletal muscle metabolic response to repeated sessions of high-intensity interval exercise in humans[J].J Appl Physiol,2010(3):628-636.

    • [30] Areta J L,Burke L M,Ross M L,et al.Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myo brillar protein synthesis[J].J Physiol,2013(9):2319-2331.

    • [31] Camera D M,West D W,Phillips S M,et al.Protein Ingestion Increases Myofibrillar Protein Synthesis after Concurrent Exercise[J].Med Sci Sports Exerc,2014(6):27-30.

    • [32] Wojtaszewski J F,MacDonald C,Nielsen J N,et al.Regulation of 5’AMP-activated protein kinase activity and substrate utilization in exercising human skeletal muscle[J].Am J Physiol Endocrinol Metab,2003(4):813-822.

    • [33] Deldicque L,Atherton P,Patel R,et al.Decrease in Akt/PKB signalling in human skeletal muscle by resistance exercise[J].Eur J Appl Physiol,2008(1):57-65.

    • [34] Bentley D J,Zhou S,Davie A J.The effect of endurance exercise on muscle force generating capacity of the lower limbs[J].J Sci Med Sport,1998(3):179-188.

    • [35] Jentjens R,Jeukendrup A.Determinants of post-exercise glycogen synthesis during short-term recovery[J].Sports Med,2003(2):117-144.

    • [36] Chen Z P,McConell G K,Michell B J,et al.AMPK signaling in contracting human skeletal muscle:acetyl-CoA carboxylase and NO synthase phosphorylation[J].Am J Physiol Endocrinol Metab,2000(5):1202-1206.

    • [37] Gollnick P D,Piehl K,Saltin B.Selective glycogen depletion pattern in human muscle bres after exercise of varying intensity and at varying pedalling rates[J].J Physiol,1974(1):45-57.

    • [38] Cadore E L,Pinto R S,Bottaro M,et al.Strength and endurance training prescription in healthy and frail elderly[J].Aging Dis,2014(3):183-195.

    • [39] García-Pallarés J,Izquierdo M.Strategies to optimize concurrent training of strength and aerobic fitness for rowing and canoeing[J].Sports Med,2011(4):329-343.

  • 用微信扫一扫

    用微信扫一扫