-
腘绳肌拉伤(Hamstring strain injuries,HSI)是运动训练和竞技比赛中较为常见的运动损伤之一。Ekstrand等人(2013,2016)研究表明,在澳大利亚职业足球比赛中,近1/5的运动员腘绳肌拉伤,其损伤人数占到总损伤人数的1/6,每一次拉伤一般导致运动员缺失17天的训练或比赛,俱乐部对每一例患者的医疗花费高达28万欧元[1-3]。Opar等人(2013)通过三年的数据统计研究发现,田径运动员腘绳肌拉伤占下肢运动损伤的75%[4]。据不完全统计,截至2018年1月,清华大学男子短跑与跳跃的10名高水平运动员中,有6人曾发生过腘绳肌拉伤而中断训练与比赛。
-
如此高比例的腘绳肌拉伤风险已经引起了世界竞技体育与运动医学领域的广泛关注,在预防与康复理念不断发展与更新的同时,防范腘绳肌拉伤的新方法新手段也不断涌入训练实践,以降低拉伤风险。当前我国科研人员的研究主要集中在拉伤因素分析、预防拉伤方法上[5-6]。但总体来讲,科研成果的水平与世界水平还存在一定差距,教练员在训练实践中也更重视竞技成绩提高,而相对忽视损伤预防训练。因此,本文试图结合腘绳肌拉伤的最新研究进展,总结相应防范损伤的训练学机制,进一步完善我国在腘绳肌预防运动损伤方面的理论体系,降低运动员的损伤风险。
-
1 腘绳肌解剖结构与受伤机制
-
1.1 腘绳肌解剖结构
-
腘绳肌由半腱肌、半膜肌以及股二头肌组成,三块肌肉共同起于坐骨结节(表1)。半腱肌位于大腿后方内侧,半膜肌位于半腱肌的深层面,两块肌肉共同止于胫骨粗隆内侧,近固定时,半腱肌与半膜肌共同作用使小腿在膝关节处屈,大腿在髋关节处伸。股二头肌位于大腿后方外侧,其长头与短头在大腿下1/3处汇合转为肌腱,止于腓骨,近固定时,长头使大腿伸,并使小腿屈和外旋[7]。
-
1.2 腘绳肌在跑步过程中的受伤机制
-
短距离冲刺能力是众多竞技运动项目制胜的关键因素之一。近些年的众多研究表明,在跑动过程中所产生的地面反作用力(GRF)的水平方向力(Fh)是决定加速能力的主要生物力学因素,髋关节伸肌肌群尤其是腘绳肌被认为是影响加速度的重要发力源。首先,基于表面肌电实验测试的研究证明了髋关节伸肌在跑动过程中的重要性;当跑步速度≥7m/s时,伸髋与屈膝肌群成为最主要的活动肌群,Morin等人通过测试人体在加速跑过程中臀部与腿部肌肉的肌电以及脚底力学数据也表明(图1),在一个跑步周期中,股二头肌在摆动末期所产生的肌肉活性最高;其次,腘绳肌在摆动末期主要进行离心收缩,Sun等人与Schache等人通过逆向动力学的方法计算了腘绳肌在摆动末期被动拉长时所产生的张力为运动员自身体重的6—8倍,如此大的肌肉张力是腘绳肌受伤的主要潜在机制[8-9]。
-
图1 跑步周期中各肌肉群的肌电变化[8]
-
除了短距离冲刺以外,跆拳道的侧踢、前踢等动作以及足球中的踢球动作以及橄榄球中的冲撞也是腘绳肌拉伤的潜在机制。Gabbe等人(2005)报道了澳大利亚社团足球队中的拉伤有19%是由于踢球动作导致的。Brooks等人(2006)报道了英国橄榄球由于冲撞导致的腘绳肌拉伤比其他运动导致的拉伤更加严重。不难发现,在各种抬腿踢的动作中,腘绳肌同样先做离心收缩运动,紧接着进行向心收缩,在离心过程中,由于肌肉承受的张力过大,超出了其承受能力而导致拉伤。
-
2 腘绳肌受伤因素
-
由于腘绳肌受伤比例极高,迄今为止,大量的文献已经对其受伤影响因素进行了研究,通过分析与归类,可以更好地帮助预测与评定腘绳肌所存在的受伤风险,以便及时建立防范机制。Opar(2012)将腘绳肌受伤的因素分为不可改变与可改变因素;Liu等人(2012)在Opar等人的研究基础上增加了风险因素的数量,包括肌肉适宜长度缩短、热身不充分、下腰痛等[10]。Ernlund等人(2017)认为赛季长短、球员位置等外在因素也是影响腘绳肌受伤的风险[11]。但是诸多因素还不明确,存在一定争议,需要结合最新研究进展进行系统综述与分析。
-
2.1 肌肉收缩适宜长度
-
Brocket等人(2004)研究认为,与未受伤的腿部相比,有腘绳肌损伤史的腿部在发挥出最大屈膝力矩时,表现出了更大的屈膝角度,这意味着肌肉收缩产生最大力量时的适宜长度缩短。Timmins等人(2015)研究表明拥有更短的股二头肌(<10.56cm)职业足球运动员的受伤风险是更长股二头肌运动员的4.1倍,股二头肌肌纤维每增加1cm,其受伤的可能性将降低21%(图2—3)[12-13]。Timmins等人(2015)还研究表明,受伤的股二头肌长头显著短于未受伤的长度[14]。虽然股二头肌长度缩短是致伤因素之一,但其受伤机制还不清楚,Morgan的假说认为,较短的肌肉长度含有相对较少的肌节,对于肌拉力更加敏感,容易造成拉伤。
-
图2 股二头肌长度与北欧训练法离心力量对于运动员赛季的损伤的影响
-
图3 股二头肌长度与腘绳肌受伤风险的关系
-
2.2 柔韧性
-
普适性的观点认为柔韧是影响运动损伤的重要因素,在训练与比赛之前,不同形式的拉伸也是运动员必不可少的准备活动,目的是预防肌肉拉伤。Bradley(2005)与Witvrouw等人(2006)研究了英国部分腘绳肌拉伤的高水平足球运动员在拉伤前的柔韧性要显著低于未受伤的运动员,这两项研究共同支持了柔韧性是腘绳肌拉伤的风险因素[15-16]。但是也有研究认为拉伤与未拉伤的运动员在腘绳肌柔韧性上不存在显著性差异。Gabbe等人(2006)研究认为,澳大利亚高水平足球运动员具有更好的柔韧性,腘绳肌拉伤复发率却更高[17]。韩经超等人(2015)通过元分析研究了腘绳肌拉伤的风险因素,认为腘绳肌柔韧性与腘绳肌拉伤的关联性不明显[6]。研究结果不一致可能与腘绳肌受伤风险因素较多有关,在研究的过程中,诸多变量并未得到统一控制。
-
2.3 力量
-
腘绳肌力量不均衡主要体现在两个方面:第一,腘绳肌与股四头肌力量比例失衡,具体表现为腘绳肌力量的减小、股四头肌力量的减小、腘绳肌与股四头肌力量比值较低,这些都是致伤的潜在因素[18-22];第二,左右腿部腘绳肌力量大小失衡,具体表现为双侧腘绳肌肉长度不同、双侧腘绳肌力量不同[12,18,20]。一项研究表明,腘绳肌在60 °/s进行离心等动收缩与股四头肌在60 °/s进行向心等动收缩所表现出的较低的肌肉力量可以作为腘绳肌受伤的弱风险因素[19]。其实不难理解,下肢腘绳肌与股四头肌的力量比值如果偏小,在冲刺跑的摆动末期的屈髋与伸膝过程中,腘绳肌扮演的“制动”角色的能力将减弱,因此,摆动初期股四头肌强有力的收缩造成了膝关节的角动量突增,在摆动末期超过了腘绳肌的生理极限,从而造成拉伤。在腘绳肌左右不对称方面,Zakas等人(2006)研究认为弱侧会更容易拉伤[23]。前期的定量研究表明,足球与田径运动员两侧偏差为10%,可以作为腘绳肌拉伤的预测因素;后续的研究认为澳大利亚足球运动员如果双侧腘绳肌力量偏差超过8%,则会增加受伤的危险;也有研究将两侧的偏差定为15%[22,24-26]。在众多定量实证研究的基础上,可以认为腘绳肌力量不均衡是导致其拉伤的重要原因。
-
2.4 准备活动
-
在训练和比赛之前进行准备活动主要分为热身与拉伸(动态与静态)两部分,近期的研究表明,静态拉伸导致了运动表现的降低[27]。Malliou等人(2007)的一则案例研究认为,15min的热身显著降低了有氧舞蹈者运动损伤风险,但是动态与静态拉伸没有表现出损伤降低的作用[28]。然而Thacker等人(2004)认为热身+拉伸对于膝关节与踝关节的损伤起到了很好的预防作用[29]。Melegati等人(2014)通过对意大利职业足球运动员进行训练与比赛前的测试(托马斯测试、支腿抬高测试),制定相应的拉伸计划,很好地降低了损伤发生率[30]。Klein(2017)认为热身与拉伸对于预防运动损伤具有重要的积极作用[31]。因此,从以往的研究可以看出,热身+拉伸对于肌肉损伤的预防具有重要意义,准备活动的作用具体表现在使肌肉温度升高而加速生物化学反应过程,可以加强末梢血液循环,增强肌肉和韧带的紧张,提高肌肉收缩能力,增大动作幅度,提高肌肉活动能量的供应效果,从而降低损伤发生的危险[32]。
-
2.5 疲劳
-
众多研究表明,腘绳肌拉伤在很大程度上发生在竞技比赛与训练的后半程,这在一定程度上反映了疲劳可能是导致腘绳肌拉伤的一个重要因素[33-36]。Mair团队从生理学角度研究认为,肌肉由于在疲劳之前吸收更少的能量,导致抵抗肌肉拉长的能力减小,因此更易被拉伤[37]。Pinniger等人从生物力学角度研究认为,由于动态高强度运动导致了在摆动期末端伸膝角度的增加,造成腘绳肌压力增大,是造成其损伤的主要原因[38]。在短距离冲刺项目以及短跑训练与比赛的开始,腘绳肌也存在较大的损伤风险,因此,疲劳并不是腘绳肌拉伤的决定性因素。对此可以从两方面进行解释:第一,腘绳肌的拉伤可能属于慢性拉伤,在疲劳产生的过程中,由于腘绳肌不断产生压力造成了肌纤维微细结构的损伤,不断增加压力导致拉伤发生;第二,腘绳肌的拉伤可能是急性的,由于过度伸膝与屈髋导致运动强度超过了腘绳肌承受限度,造成损伤。
-
2.6 下腰痛
-
研究表明,腘绳肌拉伤的发生与腰椎疾病存在一定相关关系,主要表现在下腰痛病人腘绳肌肌电活动增加时,伴随着柔韧性的降低;与未拉伤运动员相比,腘绳肌拉伤与腰椎前凸疾病显著相关[39-40]。在下腰痛病人中,S1神经受压会导致一系列的下肢反应,如股二头肌疼痛、腓肠肌麻木及无力、趾屈肌无力等,由于同受S1神经的控制,股二头肌与下腰痛存在着相关关系。
-
腘绳肌除了受可变因素的影响以外,还受多种不可变因素的影响,如年龄、身高、肌纤维类型、种族、受伤史等[6,10]。在以往可变因素的研究中,很难通过对其他变量的控制来确定腘绳肌损伤的具体风险因素,一种测试结果往往是由于受试者本身存在的多种因素的交互作用造成的。另外,个体化纵向统计追踪的研究还不多见,这在一定程度上制约了风险因素的确定。
-
3 腘绳肌风险因素评价方法
-
在前期诸多定量研究中,还存在着评价手段滞后于训练实践需求、多种影响因素还不能精确测量与评价的问题。然而,到目前为止对腘绳肌进行风险评价的主流方法是等速肌力测试法与实地测量法。
-
3.1 等速肌力测试法
-
当前主要通过等速测试系统测试与计算腘绳肌离心收缩力矩与股四头肌向心收缩力矩的比值了解力量发展的不平衡性,以此来预测腘绳肌拉伤的风险。Van Dyk等人(2016)进行了为期4年的纵向研究,样本是来自卡塔尔的614名优秀足球运动员(包括190名腘绳肌拉伤运动员),通过等速测力系统测试发现,低水平的屈膝离心收缩力量显著提高了腘绳肌的受伤风险(比值比为1.37,95%置信区间)[19]。Croisler团队也利用此方法,对比利时、巴西和法国的462名职业足球运动员(包括35名腘绳肌拉伤运动员)的腘绳肌进行等速肌力测试,测试结果认为力量不平衡运动员的腘绳肌拉伤风险是力量平衡运动员的5倍,通过力量干预训练,将力量不平衡运动员的拉伤相对风险降到了平衡运动员的1.5倍[22]。
-
但Zvijac等人(2013)对1 252名大学生足球运动员进行屈膝向心等速肌力测试,在之后的一个赛季未发现测试结果与腘绳肌拉伤存在相关关系[41]。Bennell等人(1998)对102名高水平澳大利亚足球运动员的屈膝离心与向心收缩进行测试,也未发现与腘绳肌拉伤存在相关关系[42]。
-
3.2 实地测试法
-
Opar等人(2013)认为等速肌力测试系统价格昂贵,使用率不高,由此提出了一种新型的测试腘绳肌离心收缩力量的方法,通过固定在受试者脚踝上的测力器测出受试者在进行北欧腘绳肌离心训练时离心收缩的力量大小,来预测腘绳肌受伤的风险(图4)[43]。Opar等人(2015)利用该方法对210名澳大利亚足球运动员(含28名腘绳肌受伤者)进行测试,结果显示,低力量水平运动员(<279N)在接下来的赛季中的受伤风险是高力量水平运动员的43倍[18]。Timmins等人(2015)通过该方法测试152名职业运动员后认为,腘绳肌离心力量水平低于337N,其腘绳肌受伤风险可能是其他运动员的4.4倍[12]。然而,Bourne等人(2015)利用该测试方法进行了类似的研究,却未得出腘绳肌离心收缩力量与拉伤风险存在相关关系[44]。
-
图4 北欧腘绳肌离心收缩测试法
-
综上所述,等速测力法与实地测试法在体育科学研究中都存在一定的争议,但是在实际测试中,两种测试方法各有特点。首先,等速测力系统价格昂贵,难以在各运动队的训练实践中普及,而实地测试仪较为实惠,便于携带,更加实用;其次,从已发表的科研论文中可以发现,等速测力系统在科学研究中仍是主流测试设备;最后,等速测力系统可以获得系统精确的科研数据,包括具体等速条件下各个关节角度所测试出来的关节力矩,测试结果更具有说服力。由于不同型号测试仪器设备、不同的牵引拉伸练习、不同测试体位、运动员不同的个体情况以及训练比赛的强度等往往会造成研究结果的不一致,因此,通过等速测试肌力法以及实地测试法来对腘绳肌风险进行预测的有效性还值得进一步研究。
-
4 腘绳肌训练实践策略
-
腘绳肌力量训练是预防腘绳肌损伤的重要方法策略,尤其是以离心训练方式所产生的适应性改变。来自各大联赛的44个足球俱乐部的调查表明,腘绳肌离心训练、北欧腘绳肌训练法是最主要的预防腘绳肌拉伤的训练方法[45]。但从当前我国训练实践的发展现状来看,腘绳肌专门性训练的思想观念还未引起足够重视,腘绳肌力量训练的理论体系还未完善。因此,结合当前国际先进训练理论研究成果以及具体实践所产生的增益效果,对于进一步完善我国防范腘绳肌损伤的理论体系以及预防运动员腘绳肌损伤意义重大。
-
4.1 训练方式
-
在运动训练的具体实践中,不同的练习方法手段会产生不同的训练效果。同样在抗阻训练中,不同的练习手段会使骨骼肌产生不同的结构变化以及功能性适应。大量的研究通过表面肌电与核磁成像表明,不同类型的练习手段会导致腘绳肌群不同的激活程度和激活状态[46-50]。
-
4.1.1 腘绳肌激活量度
-
腘绳肌激活量度是指腘绳肌受到神经动员激活的程度,其大小代表了练习的肌肉的刺激强度,通常用肌电信号或核磁T2来表示,肌肉的收缩强度越大,肌电信号与T2也就越强。Bourne等人(2017)、Zebis等人(2013)与Delahunt等人(2016)分别研究认为,在北欧腘绳肌离心训练法中,只有离心收缩时,股二头肌(72%—91%MVC)与半腱肌、半膜肌(82%—102%MVC)才能表现出较强的肌电信号[51-53]。在其他研究中,仰卧顶髋屈膝、俯卧屈腿、负重与无负重伸髋、壶铃摆动、仰卧直腿桥的离心阶段都表现出了腘绳肌标准肌电图非常高的水平(>80%MVC)[51,52,54,55]。因此,从腘绳肌的激活量度来看,离心训练是腘绳肌有效的激活方式。
-
4.1.2 腘绳肌激活方式
-
腘绳肌包含三块肌肉,特定的训练方式会导致不同的肌肉激活。Bourne等人(2017)的研究表明,人体在伸髋45°和屈髋的练习中,股二头肌激活程度较其他肌肉更加明显[51]。Ono等人的研究支持了此结论,该研究发现,硬拉练习的向心与离心阶段,股二头肌和半膜肌相对于半腱肌表现出了更大的激活程度[50]。McAllister等人(2014)研究认为,在罗马尼亚硬拉的离心阶段,股二头肌产生的标准肌电信号强度明显大于在俯卧屈腿与反向腿弯举练习中的信号强度,在体前屈蹲练习中的股二头肌肌电信号强度要大于在俯卧屈腿练习中的信号强度[56]。
-
图5 北欧腘绳肌训练与伸髋练习导致的肌肉适应性改变
-
然而,最近的一些采用核磁成像技术的研究一致性表明,半腱肌在北欧离心训练法的离心阶段和俯卧屈腿练习中更易被动员激活,相比较而言,股二头肌长头在伸髋45°的激活程度显著大于北欧离心训练法的激活程度[46-48,51,57]。Bourne等人(2017)研究认为,在10周的北欧腘绳肌训练与一些伸髋性练习中所产生的肌肉适应性改变是不一样的,从图5可以看出,北欧腘绳肌训练更多激活了半腱肌,而伸髋练习更多激活了股二头肌长头[13,51]。因此,从已有的研究可以看出,在腘绳肌练习的激活方式上,屈膝方向上的练习主要激活了半腱肌,而在伸髋的各种练习中,主要激活了股二头肌长头与半膜肌。
-
4.2 训练频率
-
训练频率通常指小周期内每周训练的次数。训练频率在训练计划中体现了训练内容的节奏特征,过高的训练频率容易导致疲劳与损伤的发生,过低的训练频率不易导致机体的适应性改变。因此合理安排训练频率对于训练效果至关重要。Mccall等人(2014)调查了各大联赛44个俱乐部预防损伤训练计划的使用频率(表2),结果显示,不管在赛季前还是赛季中,2—5次/周的使用频率都占有最高比例[45]。
-
表2 各大联赛俱乐部预防损伤训练计划的使用频率比例[45]
-
在基础理论研究方面,Krentz等人(2010)的研究认为,两堂离心训练课之间应安排至少48h的休息时间才能更好预防疲劳累积所导致的损伤[58]。虽然这还取决于训练的负荷量度和训练形式,但该实证研究无疑为训练计划的制订提供了科学的参考建议。
-
4.3 训练量度与训练强度
-
Presland等人(2017)研究结果显示,6周低量(每周8次)的北欧腘绳肌离心训练导致力量增加30%,而6周高量(每周100次)的北欧腘绳肌离心训练导致力量增加27.5%。这表明低量的离心训练可能导致离心力量更好的增长[59]。
-
训练量度与训练强度是训练实践中两个重要的训练变量,一般而言,训练量度的提高往往伴随着训练强度的减小,训练量度的降低也往往伴随着训练强度的提高。但是训练中面临的实际问题是高强度的离心训练容易导致运动损伤,如何避免损伤的发生是训练负荷需要考虑的另一个问题。从已有的研究可以看出,如果训练强度逐渐增加,年轻人、老人、普通健康人都可以在无损伤的情况下逐渐适应到高强度的离心训练中,并且取得了较好的形态学适应与功能性适应[60-64]。虽然目前较为适宜的离心引导式训练还未得到证实,但是通过逐渐增加训练时间(从15min开始)、训练强度(从60%1RM或者克服自重或者60%最大心率开始)、训练频率(从1—2次/周开始)可以有效预防运动损伤[61]。
-
4.4 持续时间
-
运动训练是一个长期适应的过程,力量训练对于腘绳肌损伤的预防也是一个长期系统的过程,短期的急性效应并不能起到很好的预防损伤的作用。一系列的研究结果表明,北欧腘绳肌离心训练显著降低了腘绳肌拉伤的风险,但这些研究也同时表明,严格执行训练计划是取得训练成效的根本保证[65-67]。已有的两项前瞻性研究认为,缺少北欧腘绳肌离心训练自觉性而中断的运动员在预防损伤风险上不存在显著性效果[68-69]。其中的一项研究对161名挪威足球运动员中的85名(干预组)进行10周的北欧腘绳肌离心训练,结果表明干预组并没有存在显著性效果,其原因为在干预组中只有1/5的运动员完成了训练计划[69]。而另外一项研究对220名澳大利亚业余足球运动员中的114名进行了12周5堂北欧腘绳肌离心训练(72次/课),只有47%的运动员完成了2堂训练课,而完成了5堂训练课的运动员不足10%,虽然研究结果认为完成2堂训练课的运动员受伤的几率低于对照组(4%vs.13%),但该效果量并不具有统计学意义。
-
从以上研究结果可以推断出,短时间的即刻训练效应不会显著降低损伤风险,运动损伤的预防是一个长期系统的过程,只有将其纳入日常力量训练课内容,保证持续性与系统性,才能取得较为理想的预防效果。
-
5 研究局限
-
作为综述,本研究还存在着诸多的局限性。首先,只选择了英文文献与中文文献进行研究,未搜集其他语种的文献;其次,未对纳入研究的方法学质量进行评价;再次,在各研究结果方面,未进行定量研究,只是从定性的角度进行了描述;最后,核心稳定性作为预防腘绳肌损伤的一种方法,由于其作用机制还不明确,实证性的科学研究还不多见,因此本研究未做讨论,只着重介绍了力量训练对于防范腘绳肌损伤的作用机制。
-
6 展望
-
在理论研究层面,影响腘绳肌损伤的具体因素还未完全确定,此问题研究的难度主要在于影响腘绳肌损伤的因素众多,既有运动员个体因素,也有训练与比赛强度、场上位置、天气环境等客观因素,因此,控制更多变量来进行单一变量的研究可能更有利于明确具体损伤因素。在损伤风险评价方面,建立运动项目、个体肌肉张力与训练强度的关系是预防损伤发生的关键问题之一。
-
在训练实践层面,通过变换不同的训练学因素(训练方法手段、负荷量度、训练频率、间歇时间等)来验证防范腘绳肌拉伤的作用效果还不深入;不同运动能力(灵敏、协调等)对于拉伤防范的作用机制还是研究的空白;大于10周长期训练干预所形成的适应性变化仍需进一步研究。
-
参考文献
-
[1] Ekstrand J.Keeping your top players on the pitch:the key to football medicine at a professional level[J].Br J Sports Med,2013,47(12):724.
-
[2] Ekstrand J,Waldén M,Hägglund M.Hamstring injuries have increased by 4% annually in men’s professional football,since 2001:a 13-year longitudinal analysis of the UEFA Elite Club injury study[J].Br J Sports Med,2016,50(12):1.
-
[3] Orchard J W,Seward H,Orchard J J.Results of 2 decades of injury surveillance and public release of data in the Australian Football League.[J].Am J Sports Med,2013,41(4):734.
-
[4] Opar D A,Drezner J,Shield A,et al.Acute hamstring strain injury in track-and-field athletes:A 3-year observational study at the Penn Relay Carnival[J].Scand J Med Sci Sports,2014,24(4):254.
-
[5] 曹峰锐.“腘绳肌离心收缩力矩/股四头肌向心收缩力矩”在预防腘绳肌运动性拉伤和膝关节前交叉韧带损伤方面的应用[J].中国体育科技,2017,53(2):43.
-
[6] 韩经超,刘卉.运动员腘绳肌损伤危险因素的Meta分析[J].北京体育大学学报,2015(2):79.
-
[7] 全国体育院校教材委员会.运动解剖学[M].北京:人民体育出版社,2000.
-
[8] Morin J B,Gimenez P,Edouard P,et al.Sprint acceleration mechanics:The major role of hamstrings in horizontal force production[J].Front Physiol,2015(6):404.
-
[9] Sun Y,Wei S,Zhong Y,et al.How joint torques affect hamstring injury risk in sprinting swing-stance transition[J].Med Sci Sports Exerc,2015,47(2):373.
-
[10] Liu H,Garrett W E,Moorman C T,et al.Injury rate,mechanism,and risk factors of hamstring strain injuries in sports:A review of the literature[J].Journal of Sport & Health Science,2012,1(2):92.
-
[11] Ernlund L,Vieira L D A.Hamstring injuries:update article[J].Revista Brasileira De Ortopedia,2017,52(4):373.
-
[12] Timmins R G,Bourne M N,Shield A J,et al.Short biceps femoris fascicles and eccentric knee flexor weakness increase the risk of hamstring injury in elite football(soccer):a prospective cohort study[J].Br J Sports Med,2015,50(24):1524.
-
[13] Bourne M N,Timmins R G,Opar D A,et al.An evidence-based framework for strengthening exercises to prevent hamstring injury[J].Sports Med,2017(3):1.
-
[14] Timmins R G,Shield A J,Williams M D,et al.Biceps femoris long head architecture:a reliability and retrospective injury study[J].Med Sci Sports Exerc,2015,47(5):905.>
-
[15] Bradley P S,Olsen P D,Portas M D.The effect of static,ballistic,and proprioceptive neuromuscular facilitation stretching on vertical jump performance[J].J Strength Cond Res,2007,21(1):223.
-
[16] Witvrouw E,Danneels L,Asselman P,et al.Muscle flexibility as a risk factor for developing muscle injuries in male professional soccer players.A prospective study[J].Am J Sports Med,2003,31(1):41.
-
[17] Gabbe B J,Bennell K L,Finch C F,et al.Predictors of hamstring injury at the elite level of Australian football[J].Scand J Med Sci Sports,2006,16(1):7.
-
[18] Opar D A,Williams M D,Timmins R G,et al.Eccentric hamstring strength and hamstring injury risk in Australian footballers[J].Med Sci Sports Exerc,2015,47(4):857.
-
[19] van Dyk N,Bahr R,Whiteley R,et al.Hamstring and quadriceps isokinetic strength deficits are weak risk factors for hamstring strain injuries:A 4-year cohort study[J].Am J Sports Med,2016,44(7):1789.
-
[20] Orchard J,Marsden J,Lord S,et al.Preseason Hamstring muscle weakness associated with hamstring muscle injury in Australian footballers[J].Am J Sports Med,1997,25(1):81.
-
[21] Croisier J L,Forthomme B,Namurois M,et al.Hamstring muscle strain recurrence and strength performance disorders[J].Am J Sports Med,2002,30(2):199.
-
[22] Croisier J L,Ganteaume S,Binet J,et al.Strength imbalances and prevention of hamstring injury in professional soccer players:a prospective study.[J].Am J Sports Med,2008,36(8):1469.
-
[23] Zakas A.Bilateral isokinetic peak torque of quadriceps and hamstring muscles in professional soccer players with dominance on one or both two sides[J].J Sports Med Phys Fitness,2006,46(1):28.
-
[24] Heiser T M,Weber J,Sullivan G,et al.Prophylaxis and management of hamstring muscle injuries in intercollegiate football players[J].Am J Sports Med,1984,12(5):368.
-
[25] Burkett L N.Causative factors in hamstring strains[J].Med Sci Sports,1970,2(1):39.
-
[26] Sugiura Y,Saito T,Sakuraba K,et al.Strength deficits identified with concentric action of the hip extensors and eccentric action of the hamstrings predispose to hamstring injury in elite sprinters[J].J Orthop Sports Phys Ther,2008,38(8):457.
-
[27] Samson M,Button D C,Chaouachi A,et al.Effects of dynamic and static stretching within general and activity specific warm-up protocols[J].J Sports Sci Med,2012,11(2):279.
-
[28] Malliou P,Rokka S,Beneka A,et al.Reducing risk of injury due to warm up and cool down in dance aerobic instructors[J].Journal of Back & Musculoskeletal Rehabilitation,2007,20(1):29.
-
[29] Thacker S B,Gilchrist J,Stroup D F,et al.The impact of stretching on sports injury risk:a systematic review of the literature[J].Med Sci Sports Exerc,2004,36(3):371.
-
[30] Melegati G,Tornese D,Gevi M,et al.Reducing muscle injuries and reinjuries in one italian professional male soccer team[J].Muscles Ligaments Tendons J,2014,3(4):324.
-
[31] Klein C.The Effects of a proper warm up in the prevention of musculoskeletal strains in collegiate female field hockey athletes[EB/OL].[2017-05-12].http://hdl.handle.net/11603/3916.
-
[32] 普拉托诺夫.奥林匹克运动员训练的理论与方法[M].黄签名,张江南,郭鹏程,等译.天津:天津大学出版社,2014.
-
[33] Brooks J H M,Fuller C W,Kemp S P T,et al.Incidence,risk,and prevention of hamstring muscle injuries in professional rugby union[J].Am J Sports Med,2006,34(8):1297.
-
[34] Ekstrand J,Hägglund M,Waldén M.Injury incidence and injury patterns in professional football:the UEFA injury study[J].Br J Sports Med,2011,45(7):553.
-
[35] Hawkins R D,Hulse M A,Wilkinson C,et al.The association football medical research programme:an audit of injuries in professional football[J].Br J Sports Med,2002,36(6):436.
-
[36] Hawkins R D,Fuller C W.A prospective epidemiological study of injuries in four English professional football clubs[J].Br J Sports Med,1999,33(3):196.
-
[37] Mair S D,Seaber A V,Glisson R R,et al.The role of fatigue in susceptibility to acute muscle strain injury[J].Am J Sports Med,1996,24(2):137.
-
[38] Pinniger G J,Steele J R,Groeller H.Does fatigue induced by repeated dynamic efforts affect hamstring muscle function?[J].Med Sci Sports Exerc,2000,32(3):647.
-
[39] Devlin L.Recurrent posterior thigh symptoms detrimental to performance in rugby union:predisposing factors[J].Sports Med,2000,29(4):273.
-
[40] Hennessey L,Watson A W.Flexibility and posture assessment in relation to hamstring injury[J].Br J Sports Med,1993,27(4):243.
-
[41] Zvijac J E,Toriscelli T A,Merrick S,et al.Isokinetic concentric quadriceps and hamstring strength variables from the NFL scouting combine are not predictive of hamstring injury in first-year professional football players[J].Am J Sports Med,2013,41(7):1511.
-
[42] Bennell K,Wajswelner H,Lew P,et al.Isokinetic strength testing does not predict hamstring injury in Australian Rules footballers[J].Br J Sports Med,1998,32(4):309.
-
[43] Opar D A,Piatkowski T,Williams M D,et al.A novel device using the Nordic hamstring exercise to assess eccentric knee flexor strength:a reliability and retrospective injury study[J].The Journal of Orthopaedic and Sports Physical Therapy,2013,43(9):636.
-
[44] Bourne M N,Opar D A,Williams M D,et al.Eccentric knee flexor strength and risk of hamstring injuries in rugby union:A prospective study[J].Am J Sports Med,2015,43(11):2663.
-
[45] Mccall A,Carling C,Nedelec M,et al.Risk factors,testing and preventative strategies for non-contact injuries in professional football:current perceptions and practices of 44 teams from various premier leagues[J].Br J Sports Med,2014,48(18):1352.
-
[46] Bourne M N,Opar D A,Williams M D,et al.Muscle activation patterns in the Nordic hamstring exercise:Impact of prior strain injury[J].Scand J Med Sci Sports,2016,26(6):666.
-
[47] Mendiguchia J,Garrues M A,Cronin J B,et al.Nonuniform changes in MRI measurements of the thigh muscles after two hamstring strengthening exercises[J].J Strength Cond Res,2013,27(3):574.
-
[48] Mendiguchia J,Arcos A L,Garrues M A,et al.The use of MRI to evaluate posterior thigh muscle activity and damage during nordic hamstring exercise[J].J Strength Cond Res,2013,27(12):3426.
-
[49] Ono T,Okuwaki T,Fukubayashi T.Differences in activation patterns of knee flexor muscles during concentric and eccentric exercises[J].Res Sports Med,2010,18(3):188.
-
[50] Ono T,Higashihara A,Fukubayashi T.Hamstring functions during hip-extension exercise assessed with electromyography and magnetic resonance imaging[J].Res Sports Med,2011,19(1):42.
-
[51] Bourne M N,Williams M D,Opar D A,et al.Impact of exercise selection on hamstring muscle activation[J].Br J Sports Med,2017,51(13):1021.
-
[52] Zebis M K,Skotte J,Andersen C H,et al.Kettlebell swing targets semitendinosus and supine leg curl targets biceps femoris:an EMG study with rehabilitation implications[J].Br J Sports Med,2013,47(18):1192.
-
[53] Delahunt E,McGroarty M,De Vito G,et al.Nordic hamstring exercise training alters knee joint kinematics and hamstring activation patterns in young men[J].Eur J Appl Physiol,2016,116(4):1.
-
[54] Tsaklis P,Malliaropoulos N,Mendiguchia J,et al.Muscle and intensity based hamstring exercise classification in elite female track and field athletes:implications for exercise selection during rehabilitation[J].Open Access J Sports Med,2015(6):209.
-
[55] Jakobsen M D,Sundstrup E,Andersen C H,et al.Effectiveness of hamstring knee rehabilitation exercise performed in training machine vs.elastic resistance:electromyography evaluation study[J].Am J Phys Med Rehabil,2014,93(4):320.
-
[56] Mcallister M J,Hammond K G,Schilling B K,et al.Muscle activation during various hamstring exercises[J].J Strength Cond Res,2014,28(6):1573.
-
[57] Fernandez-Gonzalo R,Tesch P A,Linnehan R M,et al.Individual muscle use in hamstring exercises by soccer players assessed using functional MRI[J].Int J Sports Med,2016,37(7):559.
-
[58] Krentz J R,Farthing J P.Neural and morphological changes in response to a 20-day intense eccentric training protocol[J].Eur J Appl Physiol,2010,110(2):333.
-
[59] Presland J,Timmins R,Bourne M,et al.The effect of high or low volume Nordic hamstring exercise training on eccentric strength and biceps femoris long head architectural adaptations[J].Journal of Science & Medicine in Sport,2017(20):12.
-
[60] Lastayo P C,Reich T E,Urquhart M,et al.Chronic eccentric exercise:improvements in muscle strength can occur with little demand for oxygen[J].Am J Sports Med,1999,276(2):R611.
-
[61] Lastayo P C,Pierotti D J,Pifer J,et al.Eccentric ergometry:increases in locomotor muscle size and strength at low training intensities[J].Am J Physiol Regul Integr Comp Physiol,2000,278(5):R1282.
-
[62] Lastayo P C,Ewy G A,Pierotti D D,et al.The Positive effects of negative work:Increased muscle strength and decreased fall risk in a frail elderly population[J].J Gerontol A Biol Sci Med Sci,2003,58(5):M419.
-
[63] Lastayo P C,Meier W,Marcus R L,et al.Reversing muscle and mobility deficits 1 to 4 years after TKA:A pilot study[J].Clin Orthop Relat Res,2009,467(6):1493.
-
[64] Hortobagyi T,Hill J P,Houmard J A,et al.Adaptive responses to muscle lengthening and shortening in humans[J].J Appl Physiol,1996,80(3):765.
-
[65] Petersen J,Thorborg K,Nielsen M B,et al.Preventive effect of eccentric training on acute hamstring injuries in men’s soccer:a cluster-randomized controlled trial[J].Am J Sports Med,2011,39(11):2296.
-
[66] Seagrave R R,Perez L,Mcqueeney S,et al.Preventive Effects of Eccentric Training on Acute Hamstring Muscle Injury in Professional Baseball[J].Orthop J Sports Med,2014,2(6):18.
-
[67] van der Horst N,Smits D W,Petersen J,et al.The preventive effect of the nordic hamstring exercise on hamstring injuries in amateur soccer players:a randomized controlled trial[J].Am J Sports Med,2015,43(6):1316.
-
[68] Gabbe B J,Branson R,Bennell K L.A pilot randomised controlled trial of eccentric exercise to prevent hamstring injuries in community-level Australian Football[J].J Sci Med Sport,2006,9(1-2):103.
-
[69] Engebretsen A H,Myklebust G,Holme I,et al.Prevention of injuries among male soccer players:a prospective,randomized intervention study targeting players with previous injuries or reduced function[J].Am J Sports Med,2008,36(6):1052.
-
摘要
腘绳肌拉伤是当前世界竞技体育面临的亟待解决的热点与重点问题之一。结合最新的研究进展,对腘绳肌致伤的风险因素、机制、评价以及训练防范机制进行梳理,认为肌肉收缩适宜长度缩短、力量不均衡、准备活动不充分是造成腘绳肌拉伤的主要因素;等速测力法与实地测试法评价腘绳肌拉伤的有效性还需进一步研究;在训练实践中建议采用腘绳肌离心训练的方式,逐渐增加训练时间、强度、频率,课次间歇至少48 h等训练策略,能够有效避免腘绳肌运动拉伤。
Abstract
Hamstring strain injuries are one kind of the hot and key issues in the current competitive sports worldwide. Combining with the latest research progress, the risk factors, mechanism, evaluation and training prevention mechanism of hamstring strain injuries are sorted out. It is considered that shortening the suitable length of muscle contraction, unbalanced strength and inadequate preparatory activities are the main factors causing hamstring strain injuries, that the effectiveness of isokinetic force measurement and field test methods in evaluating hamstring strain injuries needs further study. It is also noted that in practice the method of centrifugal training of hamstring muscle should be adopted to gradually increase the training time, intensity and frequency, with at least 48 hours interval between classes, which can effectively avoid hamstring strain injuries.
Keywords
hamstring ; strain injuries ; factors ; prevention ; training