en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

马刚(1994—),男,山东潍坊人,讲师,硕士,研究方向为运动生物力学。

通讯作者:

彭朋(1978—),男,河北沧州人,讲师,博士,研究方向为运动医务监督。

中图分类号:G804.6

文献标识码:A

文章编号:1008-3596(2023)03-0077-07

参考文献 1
HAURET K G,BEDNO S,LORINGER K,et al.Epidemiology of exercise-and sports-related injuries in a population of young,physically active adults:a survey of military servicemembers[J].Am J Sport Med,2015,43(11):2645.
参考文献 2
FRANCIS P,WHATMAN C,SHEERIN K,et al.The proportion of lower limb running injuries by gender,anatomical location and specific pathology:a systematic review[J].J Sport Sci,2019,18(1):21.
参考文献 3
JACOBS J M,CAMERON K L,BOJESCUL J A.Lower extremity stress fractures in the military[J].Clin Sport Med,2014,33(4):591.
参考文献 4
FU W J,WANG X,LIU Y.Impact induced soft-tissue vibrations associate with muscle activation in human landing movements:an accelerometry and EMG evaluation[J].Technol Health Care,2015,23(2):179.
参考文献 5
SCHUBERT A G,KEMPF J,HEIDERSCHEIT B C.Influence of stride frequency and length on running mechanics:a systematic review[J].Sports Health,2014,6(3):210.
参考文献 6
ZHANG X N,XIA R,DAI B Y,et al.Effects of exercise-induced fatigue on lower extremity joint mechanics,stiffness,and energy absorption during landings[J].J Sport Sci,2018,17(4):640.
参考文献 7
BUTLER R J,CROWELL H P,DAVIS I M.Lower extremity stiffness:implications for performance and injury[J].Clin Biomech,2003,18(6):511.
参考文献 8
金丽颖.髌骨对膝关节运动影响的生物力学分析[J].山东体育学院学报,2008,24(2):60.
参考文献 9
RATHLEFF M S,SUNE K S,RASCH M B,et al.Care seeking behaviour of adolescents with knee pain:a population-based study among 504 adolescents[J].Bmc Musculoskel Dis,2013,14(1):1.
参考文献 10
HOBARA H,SATO T,SAKAGUCHI M,et al.Step frequency and lower extremity loading during running[J].Int J Sports Med,2012,33(4):310.
参考文献 11
WILLY R W,BUCHENIC L,ROGACKI K,et al.In field gait retraining and mobile monitoring to address running biomechanics associated with tibial stress fracture[J].Scand J Med Sci Spor,2016,26(2):197.
参考文献 12
LENHART R,THELEN D,HEIDERSCHEIT B.Hip muscle loads during running at various step rates[J].J Orthop Sport Phys,2014,44(10):766.
参考文献 13
WILLSON J D,SHARPEE R,MEARDON S A,et al.Effects of step length on patellofemoral joint stress in female runners with and without patellofemoral pain[J].Clin Biomech,2014,29(3):243.
参考文献 14
WILLSON J D,DAVIS I S.Lower extremity mechanics of females with and without patellofemoral pain across activities with progressively greater task demands[J].Clin Biomech,2008,23(2):203.
参考文献 15
HAFER J F,BROWN A M,DEMILLE P,et al.The effect of a cadence retraining protocol on running biomechanics and efficiency:a pilot study[J].J Sport Sci,2015,33(7):724.
参考文献 16
WILLY R W,WILLSON J D,CLOWERS K,et al.The effects of body borne loads and cadence manipulation on patellofemoral and tibiofemoral joint kinetics during running[J].J Biomech,2016,49(16):4028.
参考文献 17
MAAS E,VANWANSEELE B.Changes in running kinematics and kinetics after a 12-week running program for beginners[J].Sport Biomech,2019,21(2):201.
参考文献 18
BINI R R,TAMBORINDEGUY A C,MOTA C B.Effects of saddle height,pedaling cadence,and workload on joint kinetics and kinematics during cycling[J].J Sport Rehabil,2010,19(3):301
参考文献 19
NOVAK A C,BROUWER B.Sagittal and frontal lower limb joint moments during stair ascent and descent in young and older adults[J].Gait posture,2011,33(1):54.
参考文献 20
MAGER F,RICHARDS J,HENNIES M,et al.Determination of ankle and metatarsophalangeal stiffness during walking and jogging[J].J Appl Biomech,2018,34(6):448.
参考文献 21
BRESSEL E.The influence of ergometer pedaling direction on peak patellofemoral joint forces[J].Clin Biomech,2001,16(5):431.
参考文献 22
VANNATTA C N,KERNOZEK T W.Patellofemoral joint stress during running with alterations in foot strike pattern[J].Med Sci Sport Exer,2015,47(5):1001.
参考文献 23
MORIN J B,SAMOZINO P,ZAMEZIATI K,et al.Effects of altered stride frequency and contact time on leg-spring behavior in human running[J].J Biomech,2007,40(15):3341.
参考文献 24
GIANDOLINI M,ARNAL P J,MILLET G Y,et al.Impact reduction during running:efficiency of simple acute interventions in recreational runners[J].Eur J Appl Physiol,2013,113(3):599.
参考文献 25
HEIDERSCHEIT B C,CHUMANOV E S,MICHALSKI M P,et al.Effects of step rate manipulation on joint mechanics during running[J].Med Sci Sport Exer,2011,43(2):296.
参考文献 26
HAMILL J,MOSES M,SEAY J.Lower extremity joint stiffness in runners with low back pain[J].Res Sports Med,2009,17(4):260.
参考文献 27
BESIER T F,LLOYD D G,ACKLAND T R,et al.Anticipatory effects on knee joint loading during running and cutting maneuvers[J].Med Sci Sport Exer,2001,33(7):1176.
参考文献 28
GABRIEL R C,ABRANTES J,GRANATA K,et al.Dynamic joint stiffness of the ankle during walking:gender-related differences[J].Phys Ther Sport,2008,9(1):16.
参考文献 29
DUTTON R A,KHADAVI M J,FREDERICSON M.Patellofemoral pain[J].Phys Med Reh Clin N,2016,27(1):31.
参考文献 30
WIRTZ A D,WILLSON J D,KERNOZEK T W,et al.Patellofemoral joint stress during running in females with and without patellofemoral pain[J].Knee,2012,19(5):703.
参考文献 31
LENHART R L,THELEN D G,WILLE C M,et al.Increasing running step rate reduces patellofemoral joint forces[J].Med Sci Sport Exer,2014,46(3):557.
参考文献 32
PAOLONI M,MANGONE M,FRATOCCHI G,et al.Kinematic and kinetic features of normal level walking in patellofemoral pain syndrome:more than a sagittal plane alteration[J].J Biomech,2010,43(9):1794.
参考文献 33
BESIER T F,DRAPER C E,GOLD G E,et al.Patellofemoral joint contact area increases with knee flexion and weight-bearing[J].J Orthop Res,2010,23(2):345.
目录contents

    摘要

    目的:探究12周步频控制训练对步态、下肢刚度及髌股关节力学特征的影响。方法:招募 33名青年人随机分为对照组 (n=18)与实验组 (n=15),采用 SimiMotion红外动作捕捉系统、 Kistler三维测力台及 BTS-Gwalk步态分析系统分别采集受试者训练前后跑步时的运动学和动力学数据,利用下肢刚度及髌股关节力学特征对跑步时的运动表现及损伤风险进行量化评定。结果:12周的训练干预后,对照组的步态、下肢刚度及髌股关节力学特征未见显著性差异;实验组的步频显著提高,腿刚度、髋关节刚度显著增加,膝踝关节刚度、髌股关节力和髌股关节应力显著降低。结论:12 周的步频控制训练改变了跑者的自适应步频;腿刚度的增加优化了跑步时下肢能量输出,而膝、踝关节刚度的降低有助于吸收冲击能量,降低骨骼损伤的风险;12周步频控制训练改变了髌股关节的负荷模式,进而降低了跑步时发生髌股疼痛综合征的风险。

    Abstract

    Objective : To explore the effects of 12-week cadence control training on gait, lower limb stiffness and mechanical characteristics of the patellofemoral joint. Methods : 33 young people were randomly recruited and divided into control group (n=18) and experimental group (n=15). Simi Motion infrared motion capture system, Kistler 3D force measuring platform and BTS-Gwalk gait analysis system were applied to collect the kinematics and dynamics data of subjects before and after training respectively. Lower limb stiffness and mechanical characteristics of the patellofemoral joint were used to assess performance and injury risk during running. Results : After 12 weeks of training intervention, there was no significant difference in gait, lower limb stiffness and mechanical characteristics of the patellofemoral joint in the control group; in the experimental group, step cadence was significantly increased, leg stiffness, hip stiffness, knee and ankle stiffness, patellofemoral joint force, and patellofemoral joint stress were significantly decreased. Conclusions : 12 weeks of cadence control training changed runners’ adaptive cadence; increased leg stiffness optimizes lower limb energy output during running, while reduced knee and ankle stiffness help absorb impact energy and reduce the risk of bone damage; 12-week cadence-controlled training altered the loading pattern of the patellofemoral joint, which in turn reduced the risk of developing patellofemoral pain syndrome during running.

    关键词

    步频步态刚度髌股关节应力

  • 1 问题的提出

  • 跑步作为最常见的运动方式,虽具有促进身心健康等益处,但也容易引起过劳性损伤。调查显示,跑步过程中发生的损伤占运动损伤总数的 40% [1]。其中,髌股疼痛占比高达 17% [2]。一般认为,这是由于跑步过程中关节和组织的过度使用或能力不足以承担负荷造成的[3]

  • 跑步损伤受多种因素影响,且大多与跑步时下肢受到较大的地面冲击力有关[4]。因此,减小跑步过程中下肢受到的冲击力可能会降低跑步损伤的风险。研究显示,在平地跑步时,步频的改变会显著影响与关节负荷和受伤风险相关的运动学和动力学变量[5]。因此,可以通过改变步频策略降低跑步时下肢关节的损伤风险。研究显示,下肢刚度可有效反映肢体承受外部载荷的能力,其与损伤风险高度相关[6]。腿刚度(leg stiffness,Kleg)的变化主要受下肢压缩程度及地面冲击力峰值的影响,因此最适合评估行走与跑步[7]。但如果要将刚度调节策略具体到关节层面,则需要对关节刚度(joint stiffness,Kjoint)进行分析[7]。另外,在跑步过程中,下肢骨骼间的相互作用对关节损伤的影响尤为重要。髌骨位于股四头肌的肌腱内,髌骨的存在能够加大股四头肌的肌力臂,为股四头肌的收缩创造良好的力学条件[8]。股骨与髌骨在接触面上产生的作用力被称为髌股关节力(patellofemoral joint force,PFJF),单位面积的 PFJF 被称为髌股关节应力(patellofemoral joint stress,PFJS)。相比于传统的力学指标,PFJS有助于我们更好了解跑步过程中下肢骨骼之间的力学特征。研究显示,与正常人相比,髌股关节疼痛患者的 PFJS显著增加[9]。在恒定的跑步速度下,将步频提高5%~10%可有效降低垂直地面反作用力[10]、髋关节内收峰值[11]、膝关节屈曲角度及负荷[12-13],以上指标的变化均与髌股关节疼痛高度相关[14]。虽然能够通过即刻增加步频而有效改善下肢着地时的生物力学特征,但关于长期的步频训练能否保持这些生物力学特征变化并有效降低跑步损伤的研究较为少见。

  • 基于此,本研究运用运动生物力学手段,探究12周的步频控制训练对跑步时的步态、下肢刚度及髌股关节力学特征的影响,为降低跑步损伤风险的训练方式提供理论支撑。

  • 2 研究对象与方法

  • 2.1 研究对象

  • 从天津市某高校随机招募40名青年跑步爱好者。要求年龄20~30岁,半年内无下肢肌骨损伤史或其他影响步态的情况,每周跑步距离大于25km [15]。通过抽签的方式将受试者均分为对照组与实验组,对照组进行为期12周的日常跑步训练,实验组进行为期12周的步频控制干预训练。干预过程中7人流失,最终共有33名受试者纳入研究(表1)。所有受试者均了解实验目的、实验流程和潜在风险并签署知情同意书。

  • 表1 受试者基本信息

  • 2.2 仪器设备

  • (1)采用由 6 颗工业级光学摄像头组成的 Simi Motion动作技术分析系统(德国SIMI Reality Motion Systems公司)对跑步的运动学数据进行采集处理,同时配以 LM-15型主动发光Marker点对受试者的运动进行标记,采集频率设为100Hz。

  • (2)采用 Kistler三维测力台(瑞士 Kistler 公司)采集跑步的动力学数据。将测力台置于跑道的凹槽内,使其与跑道平面保持平齐并固定。采集频率设置为1000Hz。

  • (3)采用 BTS-G-WALK 步态分析系统(意大利 BTS公司)采集受试者自适应跑步过程中的步频、步速等数据,使用时将传感器放置于骶骨上方。

  • 2.3 实验流程

  • (1)步频控制训练前、后测试:受试者统一更换紧身测试服与测试鞋,进行身体形态学指标及优势腿的测量,并进行5min的测试前热身。热身完成后,由实验人员将 41 个主动发光 Marker点粘贴于受试者相应的骨性标志点上。受试者以12km/h±5%的速度通过跑道,要求优势腿完全踏上测力台、无 Marker点掉落、采集过程无停顿为1次成功测试,每名受试者至少保留3次成功测试。

  • (2)步频控制训练方案:受试者将 BTS-GWALK 传感器放置于骶骨上方,然后以自选步速与步频跑步3次,其平均值即为该受试者的自选步速与步频。然后通过节拍器控制自选步速不变,在自选步频的基础上增加7.5% [16]进行12 周的步频控制训练,每周3次,每次45min [17]

  • 2.4 数据处理

  • 原始的运动学数据采用 Simi Motion 进行 Marker点的重命名、删补,并对数据进行滤波、百分化、标准化等操作处理。采用Butter Worth 四阶数字低通滤波分别对运动学和动力学数据进行截止频率为 7 Hz [6]和 50 Hz [18]的滤波处理。采用逆向动力学计算下肢膝关节由肌肉产生的净力矩[19]。运动学数据以身高进行标准化,动力学数据以体重进行标准化。

  • 2.4.1 腿刚度与关节刚度

  • 腿刚度[6]的定义为支撑期内垂直地面反作用力峰值与腿部位移量的比值,由公式(1)与(2)计算得出; 关节刚度[20]的定义为支撑期内关节力矩与关节角度变化的比值,由公式(3)计算得出。

  • Kleg=vGRFpeakΔL
    (1)
  • ΔL=L0-L02-V*tc22+Δyc
    (2)
  • Kjoint= Moment RoM
    (3)
  • 其中,vGRFpeak 表示垂直地面反作用力峰值,ΔL 表示垂直腿长的变化,L0 表示下肢初始长度,V 表示平均速度,tc 表示足部撞击时间,Δyc 表示触地期间质心的垂直位移,Moment表示关节力矩的变化量,RoM 表示关节角度的变化量。

  • 2.4.2 髌股关节力学

  • 本研究基于Bressel [21]及 Vannatta [22]的模型计算髌股关节力学相关指标。具体计算公式如下:

  • (1)股四头肌肌力(quadriceps force,QF)计算

  • LA0.036θ+3.0(0θ<30)-0.043θ+5.4(30θ<60)-0.027θ+4.3(60θ<90)2.0(90θ)
    (4)
  • QF [21]的定义为膝关节伸膝力矩与股四头肌有效肌力臂的比值。公式(4)中的 LA(股四头肌的有效肌力臂)为矢状面膝关节角度(knee angle,KA)θ的分段函数。

  • MEXT=MNET
    (5)
  • QFθi=MEXTθi/LAθi*0.01
    (6)
  • 公式(5)中的 MEXT(N·m)为矢状面伸膝力矩,MNET(N·m)为矢状面膝关节净膝力矩,公式(6)中的θi(°)为第i帧膝关节屈伸角度。

  • (2)髌股关节力(PFJF)计算

  • β=30.46+0.53(θ)
    (7)
  • PFJF=2QFsin(β/2)
    (8)
  • PFJF 依据公式(7)(8)计算得到[21]。其中,β(°)为股四头肌肌力线与髌韧带拉力线之间的夹角[21]

  • (3)髌股关节应力(PFJS)计算

  • PFCAθi=0.0781×θi2+0.6763×θi+151.75
    (9)
  • PFJSθi=PFJFθi/PFCAθi
    (10)
  • 髌股与股骨的接触面积(patellofemoral contact area,PFCA)为矢状面膝关节角度θ 的函数[22],通过公式(9)计算,PFJS 即为 PFJFPFCA 的比值[21]

  • 2.5 统计分析

  • 应用SPSS20.0对数据进行统计分析,数据以平均值±标准差(X¯±SD)表示。通过 Shapiro-Wilk检验数据的正态分布性; 应用双因素方差分析(Two-way Measures ANOVA)观察自变量(组别×时间)对步态参数、下肢刚度及髌股关节力学特征的影响。将显著性差异水平设置为0.05。

  • 3 结果

  • 3.1 训练前后步态参数比较

  • 由表2可知,训练后组间步频出现显著性差异(P=0.000); 实验组训练后的步频显著增加(P=0.000),步长显著减小(P=0.003)。

  • 表2 训练前后步态参数比较

  • 注:a表示同一时间组间对比有显著性差异,b表示组内干预前后对比有显著性差异,下同。

  • 3.2 训练前后腿刚度与关节刚度比较

  • 由表3 可知,训练后实验组的 ΔL P=0.042)、RoMhipP =0.000)、MomenthipP =0.031)、MomentkneeP =0.044)、KkneeP=0.000)与 KankleP =0.023)显著减小,KlegP =0.000)与 KhipP =0.000)显著增加。

  • 3.3 训练前后髌股关节力学特征比较

  • 由表4 可知,训练后实验组和对照组的 KMpeakP =0.024)、QFpeakP = 0.018)、 PFJFpeakP = 0.020)及 PFJSpeakP = 0.022)出现显著性差异; 训练后实验组的 KMpeakP =0.021)、QFpeakP = 0.010)、 PFJFpeakP = 0.004)及 PFJSpeakP = 0.013)均显著减小。

  • 表3 训练前后腿刚度与关节刚度参数比较

  • 表4 训练前后髌股关节力学特征峰值比较

  • 4 讨论

  • 本研究参照 Willy等人的研究,将步频提高 7.5%定为12周的步频控制策略[16]。本研究结果显示,12周步频控制训练后,实验组步频仅提高了6.68%。这可能是由于本研究将干预后的测试速度规定为12km/h,导致实验组训练后的步频并未提高到107.5%的水平。综上,12周的步频控制训练改变了受试者的自适应步频,有效保持了其对跑步策略的影响。

  • 下肢刚度与运动表现和损伤风险有着密切的关系[6720]。人体在跑步时下肢会表现出类似弹簧的特征。当步频策略改变时,下肢肌肉骨骼系统会相应改变其 “弹簧” 系统的力学表现[23]。本研究显示,12周的步频控制训练后的 Kleg 显著增加。Butler等研究指出,较高的 Kleg 有利于优化下肢能量输出,降低运动的代谢成本[7]。因此,提高步频的跑步策略有利于增加 Kleg,进而提高跑步表现。需要注意的是,Kleg 在步频训练前后的差异是由 △L 的变化造成的。有研究显示,步频的提高导致足部触地时间及质心垂直位移降低[24-25],这可能是训练前后△L出现差异的原因。人体在运动过程中,下肢可简化为一个多关节系统,Kleg 的调节取决于多种因素,包括 Kjoint 及运动学和动力学调节策略。由于计算 Kleg 所需的△L取决于下肢关节的旋转运动,因此对具体某个 Kjoint 的分析将有助于我们更全面了解步频控制干预对下肢 Kjoint 的影响。Hamill等研究发现,Kjoint 与过劳性损伤和退行性疾病等因素有关[26],关节灵活性越大,施加到该关节上的负荷越容易被缓冲。研究表明,跑步时膝关节与踝关节是缓冲负荷的主要关节,即足部触地时的能量主要依靠膝关节与踝关节吸收[26-27]。当膝关节屈曲程度增加,即膝关节灵活性增加时,下肢对地面冲击能量的吸收能力大大增加[27]。本研究显示,与步频控制训练前相比,训练后的 Kknee 与 Kankle 显著降低。一方面,由公式(3)可知,关节活动度的增加和关节力矩的降低均有助于 Kknee 与 Kankle 的降低。由表3可知,训练后 Momentknee 的降低是造成 Kknee 降低的原因。 RoMankle 和 Momentankle 在训练后均表现出略微降低的趋势,变化量分别占训练前的5.65%和 8.04%,因此,Momentankle 是造成 Kankle 降低的主要原因。另一方面,较大的 Kjoint 与骨损伤风险呈正相关性[28],步频控制训练可能通过降低 Kknee 与 Kankle 以降低下肢损伤的风险。本研究显示,12周步频控制训练后实验组 Khip 显著增加。由表3 可知,实验组训练后的 Momenthip 和 RoMhip 均出现显著性下降。但由于 RoMhip 下降幅度显著大于 Momenthip,因此造成 Khip 的增加。RoMhip 的显著性下降可能是由于训练后在相同的跑步速度下步长的减小造成的。综上,12 周的步频控制训练通过增加腿刚度优化运动表现,降低膝、踝关节刚度以吸收冲击能量,降低损伤风险。

  • 髌股疼痛综合征是跑步运动中最常见的过劳性损伤,长期的髌股关节疼痛加剧了髌股关节炎的患病风险[13-29]。PFJS的增加是髌股关节疼痛的主要影响因素[9],且与正常人相比,髌股疼痛综合征患者在正常行走和跑步时表现出更大的 PFJS [930]。因此,降低跑步过程中的 PFJS有利于预防与治疗髌股关节疼痛,降低患髌股疼痛综合征的风险。Lenhart和 Heiderscheit等研究显示,与自适应步频相比,步频的增加有效减小了胫股骨关节做功输出及髌股关节接触应力[2531]。本研究显示,训练后实验组的 PFJS显著降低。根据 PFJS的计算公式可知,PFJS的降低可能是PFJF的降低或 PFCA 的增加或两者变化的结合。在本研究中,训练后的 QF 显著降低,PFCA 未见显著性差异。一方面,QF 的降低导致 PFJF 的降低,这将有助于 PFJS的降低; 另一方面,由 PFCA 的计算公式可知,KA 是影响 PFCA 的唯一变量,而训练前后的 KA 并未出现显著性差异,因此本研究中 PFCA 并不是影响 PFJS的关键因素。Paoloni等研究显示,髌股疼痛综合征患者主动采取 “股四头肌回避”的步态模式,通过降低 KM 达到降低 QF 的目的[32]。虽然本研究中的受试者均为正常人群,但可以明显观察到步频训练后 KM 的降低,KM 的降低是造成 PFJS 降低的主要原因。Heiderscheit等研究发现,随着步频的增加,KA 和 KM 均显著增加[25]。而 Besier等研究指出,KA 的增加导致 PFCA 的增加,PFCA 的增加会分散 PFJF,从而减小 PFJS [33]。而本研究中的 KA 并未出现显著性差异,猜测可能与跑步时的关节策略有关,步频的改变可能仅仅体现在髋关节策略上,而未对膝、踝关节活动产生影响,这在表3中也得以体现。研究显示,KM 的降低可能与更短的支撑时间、优势脚触地瞬间质心下降速度的降低及较小的 vGRFpeak 有关[1025]。步频越高,跑步时的支撑相占比越小[25]。这与本研究结果一致,步频的增加有利于 KM 的降低。综上,12周的步频控制训练有效降低了髌股关节力及髌股关节应力,改变了髌股关节的负荷模式,进而降低了跑步引发髌股疼痛综合征的风险。

  • 5 结论

  • 12周的步频控制训练改变了跑者的自适应步频,有效保持了其对跑步策略的影响; 12周步频控制训练后,腿刚度的增加有助于优化下肢能量输出,提高运动表现; 而膝、踝关节刚度的降低有助于吸收冲击能量,降低骨骼损伤关节应力,进而降低了跑步时发生髌股疼痛综合征的风险。

  • 参考文献

    • [1] HAURET K G,BEDNO S,LORINGER K,et al.Epidemiology of exercise-and sports-related injuries in a population of young,physically active adults:a survey of military servicemembers[J].Am J Sport Med,2015,43(11):2645.

    • [2] FRANCIS P,WHATMAN C,SHEERIN K,et al.The proportion of lower limb running injuries by gender,anatomical location and specific pathology:a systematic review[J].J Sport Sci,2019,18(1):21.

    • [3] JACOBS J M,CAMERON K L,BOJESCUL J A.Lower extremity stress fractures in the military[J].Clin Sport Med,2014,33(4):591.

    • [4] FU W J,WANG X,LIU Y.Impact induced soft-tissue vibrations associate with muscle activation in human landing movements:an accelerometry and EMG evaluation[J].Technol Health Care,2015,23(2):179.

    • [5] SCHUBERT A G,KEMPF J,HEIDERSCHEIT B C.Influence of stride frequency and length on running mechanics:a systematic review[J].Sports Health,2014,6(3):210.

    • [6] ZHANG X N,XIA R,DAI B Y,et al.Effects of exercise-induced fatigue on lower extremity joint mechanics,stiffness,and energy absorption during landings[J].J Sport Sci,2018,17(4):640.

    • [7] BUTLER R J,CROWELL H P,DAVIS I M.Lower extremity stiffness:implications for performance and injury[J].Clin Biomech,2003,18(6):511.

    • [8] 金丽颖.髌骨对膝关节运动影响的生物力学分析[J].山东体育学院学报,2008,24(2):60.

    • [9] RATHLEFF M S,SUNE K S,RASCH M B,et al.Care seeking behaviour of adolescents with knee pain:a population-based study among 504 adolescents[J].Bmc Musculoskel Dis,2013,14(1):1.

    • [10] HOBARA H,SATO T,SAKAGUCHI M,et al.Step frequency and lower extremity loading during running[J].Int J Sports Med,2012,33(4):310.

    • [11] WILLY R W,BUCHENIC L,ROGACKI K,et al.In field gait retraining and mobile monitoring to address running biomechanics associated with tibial stress fracture[J].Scand J Med Sci Spor,2016,26(2):197.

    • [12] LENHART R,THELEN D,HEIDERSCHEIT B.Hip muscle loads during running at various step rates[J].J Orthop Sport Phys,2014,44(10):766.

    • [13] WILLSON J D,SHARPEE R,MEARDON S A,et al.Effects of step length on patellofemoral joint stress in female runners with and without patellofemoral pain[J].Clin Biomech,2014,29(3):243.

    • [14] WILLSON J D,DAVIS I S.Lower extremity mechanics of females with and without patellofemoral pain across activities with progressively greater task demands[J].Clin Biomech,2008,23(2):203.

    • [15] HAFER J F,BROWN A M,DEMILLE P,et al.The effect of a cadence retraining protocol on running biomechanics and efficiency:a pilot study[J].J Sport Sci,2015,33(7):724.

    • [16] WILLY R W,WILLSON J D,CLOWERS K,et al.The effects of body borne loads and cadence manipulation on patellofemoral and tibiofemoral joint kinetics during running[J].J Biomech,2016,49(16):4028.

    • [17] MAAS E,VANWANSEELE B.Changes in running kinematics and kinetics after a 12-week running program for beginners[J].Sport Biomech,2019,21(2):201.

    • [18] BINI R R,TAMBORINDEGUY A C,MOTA C B.Effects of saddle height,pedaling cadence,and workload on joint kinetics and kinematics during cycling[J].J Sport Rehabil,2010,19(3):301

    • [19] NOVAK A C,BROUWER B.Sagittal and frontal lower limb joint moments during stair ascent and descent in young and older adults[J].Gait posture,2011,33(1):54.

    • [20] MAGER F,RICHARDS J,HENNIES M,et al.Determination of ankle and metatarsophalangeal stiffness during walking and jogging[J].J Appl Biomech,2018,34(6):448.

    • [21] BRESSEL E.The influence of ergometer pedaling direction on peak patellofemoral joint forces[J].Clin Biomech,2001,16(5):431.

    • [22] VANNATTA C N,KERNOZEK T W.Patellofemoral joint stress during running with alterations in foot strike pattern[J].Med Sci Sport Exer,2015,47(5):1001.

    • [23] MORIN J B,SAMOZINO P,ZAMEZIATI K,et al.Effects of altered stride frequency and contact time on leg-spring behavior in human running[J].J Biomech,2007,40(15):3341.

    • [24] GIANDOLINI M,ARNAL P J,MILLET G Y,et al.Impact reduction during running:efficiency of simple acute interventions in recreational runners[J].Eur J Appl Physiol,2013,113(3):599.

    • [25] HEIDERSCHEIT B C,CHUMANOV E S,MICHALSKI M P,et al.Effects of step rate manipulation on joint mechanics during running[J].Med Sci Sport Exer,2011,43(2):296.

    • [26] HAMILL J,MOSES M,SEAY J.Lower extremity joint stiffness in runners with low back pain[J].Res Sports Med,2009,17(4):260.

    • [27] BESIER T F,LLOYD D G,ACKLAND T R,et al.Anticipatory effects on knee joint loading during running and cutting maneuvers[J].Med Sci Sport Exer,2001,33(7):1176.

    • [28] GABRIEL R C,ABRANTES J,GRANATA K,et al.Dynamic joint stiffness of the ankle during walking:gender-related differences[J].Phys Ther Sport,2008,9(1):16.

    • [29] DUTTON R A,KHADAVI M J,FREDERICSON M.Patellofemoral pain[J].Phys Med Reh Clin N,2016,27(1):31.

    • [30] WIRTZ A D,WILLSON J D,KERNOZEK T W,et al.Patellofemoral joint stress during running in females with and without patellofemoral pain[J].Knee,2012,19(5):703.

    • [31] LENHART R L,THELEN D G,WILLE C M,et al.Increasing running step rate reduces patellofemoral joint forces[J].Med Sci Sport Exer,2014,46(3):557.

    • [32] PAOLONI M,MANGONE M,FRATOCCHI G,et al.Kinematic and kinetic features of normal level walking in patellofemoral pain syndrome:more than a sagittal plane alteration[J].J Biomech,2010,43(9):1794.

    • [33] BESIER T F,DRAPER C E,GOLD G E,et al.Patellofemoral joint contact area increases with knee flexion and weight-bearing[J].J Orthop Res,2010,23(2):345.

  • 参考文献

    • [1] HAURET K G,BEDNO S,LORINGER K,et al.Epidemiology of exercise-and sports-related injuries in a population of young,physically active adults:a survey of military servicemembers[J].Am J Sport Med,2015,43(11):2645.

    • [2] FRANCIS P,WHATMAN C,SHEERIN K,et al.The proportion of lower limb running injuries by gender,anatomical location and specific pathology:a systematic review[J].J Sport Sci,2019,18(1):21.

    • [3] JACOBS J M,CAMERON K L,BOJESCUL J A.Lower extremity stress fractures in the military[J].Clin Sport Med,2014,33(4):591.

    • [4] FU W J,WANG X,LIU Y.Impact induced soft-tissue vibrations associate with muscle activation in human landing movements:an accelerometry and EMG evaluation[J].Technol Health Care,2015,23(2):179.

    • [5] SCHUBERT A G,KEMPF J,HEIDERSCHEIT B C.Influence of stride frequency and length on running mechanics:a systematic review[J].Sports Health,2014,6(3):210.

    • [6] ZHANG X N,XIA R,DAI B Y,et al.Effects of exercise-induced fatigue on lower extremity joint mechanics,stiffness,and energy absorption during landings[J].J Sport Sci,2018,17(4):640.

    • [7] BUTLER R J,CROWELL H P,DAVIS I M.Lower extremity stiffness:implications for performance and injury[J].Clin Biomech,2003,18(6):511.

    • [8] 金丽颖.髌骨对膝关节运动影响的生物力学分析[J].山东体育学院学报,2008,24(2):60.

    • [9] RATHLEFF M S,SUNE K S,RASCH M B,et al.Care seeking behaviour of adolescents with knee pain:a population-based study among 504 adolescents[J].Bmc Musculoskel Dis,2013,14(1):1.

    • [10] HOBARA H,SATO T,SAKAGUCHI M,et al.Step frequency and lower extremity loading during running[J].Int J Sports Med,2012,33(4):310.

    • [11] WILLY R W,BUCHENIC L,ROGACKI K,et al.In field gait retraining and mobile monitoring to address running biomechanics associated with tibial stress fracture[J].Scand J Med Sci Spor,2016,26(2):197.

    • [12] LENHART R,THELEN D,HEIDERSCHEIT B.Hip muscle loads during running at various step rates[J].J Orthop Sport Phys,2014,44(10):766.

    • [13] WILLSON J D,SHARPEE R,MEARDON S A,et al.Effects of step length on patellofemoral joint stress in female runners with and without patellofemoral pain[J].Clin Biomech,2014,29(3):243.

    • [14] WILLSON J D,DAVIS I S.Lower extremity mechanics of females with and without patellofemoral pain across activities with progressively greater task demands[J].Clin Biomech,2008,23(2):203.

    • [15] HAFER J F,BROWN A M,DEMILLE P,et al.The effect of a cadence retraining protocol on running biomechanics and efficiency:a pilot study[J].J Sport Sci,2015,33(7):724.

    • [16] WILLY R W,WILLSON J D,CLOWERS K,et al.The effects of body borne loads and cadence manipulation on patellofemoral and tibiofemoral joint kinetics during running[J].J Biomech,2016,49(16):4028.

    • [17] MAAS E,VANWANSEELE B.Changes in running kinematics and kinetics after a 12-week running program for beginners[J].Sport Biomech,2019,21(2):201.

    • [18] BINI R R,TAMBORINDEGUY A C,MOTA C B.Effects of saddle height,pedaling cadence,and workload on joint kinetics and kinematics during cycling[J].J Sport Rehabil,2010,19(3):301

    • [19] NOVAK A C,BROUWER B.Sagittal and frontal lower limb joint moments during stair ascent and descent in young and older adults[J].Gait posture,2011,33(1):54.

    • [20] MAGER F,RICHARDS J,HENNIES M,et al.Determination of ankle and metatarsophalangeal stiffness during walking and jogging[J].J Appl Biomech,2018,34(6):448.

    • [21] BRESSEL E.The influence of ergometer pedaling direction on peak patellofemoral joint forces[J].Clin Biomech,2001,16(5):431.

    • [22] VANNATTA C N,KERNOZEK T W.Patellofemoral joint stress during running with alterations in foot strike pattern[J].Med Sci Sport Exer,2015,47(5):1001.

    • [23] MORIN J B,SAMOZINO P,ZAMEZIATI K,et al.Effects of altered stride frequency and contact time on leg-spring behavior in human running[J].J Biomech,2007,40(15):3341.

    • [24] GIANDOLINI M,ARNAL P J,MILLET G Y,et al.Impact reduction during running:efficiency of simple acute interventions in recreational runners[J].Eur J Appl Physiol,2013,113(3):599.

    • [25] HEIDERSCHEIT B C,CHUMANOV E S,MICHALSKI M P,et al.Effects of step rate manipulation on joint mechanics during running[J].Med Sci Sport Exer,2011,43(2):296.

    • [26] HAMILL J,MOSES M,SEAY J.Lower extremity joint stiffness in runners with low back pain[J].Res Sports Med,2009,17(4):260.

    • [27] BESIER T F,LLOYD D G,ACKLAND T R,et al.Anticipatory effects on knee joint loading during running and cutting maneuvers[J].Med Sci Sport Exer,2001,33(7):1176.

    • [28] GABRIEL R C,ABRANTES J,GRANATA K,et al.Dynamic joint stiffness of the ankle during walking:gender-related differences[J].Phys Ther Sport,2008,9(1):16.

    • [29] DUTTON R A,KHADAVI M J,FREDERICSON M.Patellofemoral pain[J].Phys Med Reh Clin N,2016,27(1):31.

    • [30] WIRTZ A D,WILLSON J D,KERNOZEK T W,et al.Patellofemoral joint stress during running in females with and without patellofemoral pain[J].Knee,2012,19(5):703.

    • [31] LENHART R L,THELEN D G,WILLE C M,et al.Increasing running step rate reduces patellofemoral joint forces[J].Med Sci Sport Exer,2014,46(3):557.

    • [32] PAOLONI M,MANGONE M,FRATOCCHI G,et al.Kinematic and kinetic features of normal level walking in patellofemoral pain syndrome:more than a sagittal plane alteration[J].J Biomech,2010,43(9):1794.

    • [33] BESIER T F,DRAPER C E,GOLD G E,et al.Patellofemoral joint contact area increases with knee flexion and weight-bearing[J].J Orthop Res,2010,23(2):345.

  • 用微信扫一扫

    用微信扫一扫