en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

苏坤霞(1984—),女,河南商水人,副教授,博士,研究方向为运动康复学、体育教育训练学、体育人文社会学。

中图分类号:G804.2

文献标识码:A

文章编号:1008-3596(2024)05-0073-08

参考文献 1
TREFTS E,GANNON M,WASSERMAN D H.The liver[J].Current Biology,2017,27(21):R1147.
参考文献 2
CHRISTENSEN S.Recognizing obesity as a disease[J].Journal of the American Association of Nurse Practitioners,2020,32(7):497.
参考文献 3
JIANG N,BÉNARD C Y,KÉBIR H,et al.Human CLK2 links cell cycle progression,apoptosis,and telomere length regulation[J].The Journal of Biological Chemistry,2003,278(24):21678.
参考文献 4
HATTING M,RINES A K,LUO C,et al.Adipose tissue CLK2 promotes energy expenditure during high-fat diet intermittent fasting[J].Cell Metabolism,2017,25(2):428.
参考文献 5
QUARESMA P G F,WEISSMANN L,ZANOTTO T M,et al.Cdc2-like kinase 2 in the hypothalamus is necessary to maintain energy homeostasis[J].International Journal of Obesity,2017,41(2):268.
参考文献 6
TABATA M,RODGERS J T,HALL J A,et al.Cdc2-like kinase 2 suppresses hepatic fatty acid oxidation and ketogenesis through disruption of the PGC-1α and Med1 complex[J].Diabetes,2014,63(5):1519.
参考文献 7
RODGERS J T,HAAS W,GYGI S P,et al.Cdc2-like kinase 2 is an insulin-regulated suppressor of hepatic gluconeogenesis[J].Cell Metabolism,2010,11(1):23.
参考文献 8
RODGERS J T,LERIN C,GERHART-HINES Z,et al.Metabolic adaptations through the PGC-1α and SIRT1 pathways[J].FEBS Letters,2008,582(1):46.
参考文献 9
PUIGSERVER P,WU Z,PARK C W,et al.A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis[J].Cell,1998,92(6):829.
参考文献 10
CORONA J C,DUCHEN M R.PPARγ and PGC-1α as therapeutic targets in Parkinson’s[J].Neurochemical Research,2015,40(2):308.
参考文献 11
HANDSCHIN C.The biology of PGC-1α and its therapeutic potential[J].Trends in Pharmacological Sciences,2009,30(6):322.
参考文献 12
BESSEICHE A,RIVELINE J P,GAUTIER J F,et al.Metabolic roles of PGC-1α and its implications for type 2 diabetes[J].Diabetes & Metabolism,2015,41(5):347.
参考文献 13
WU H J,DENG X N,SHI Y H,et al.PGC-1α,glucose metabolism and type 2 diabetes mellitus[J].The Journal of Endocrinology,2016,229(3):R99.
参考文献 14
LI X H,MONKS B,GE Q Y,et al.Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1α transcription coactivator[J].Nature,2007,447(7147):1012.
参考文献 15
CANTÓ C,AUWERX J.Clking on PGC-1α to inhibit gluconeogenesis[J].Cell Metabolism,2010,11(1):6.
参考文献 16
KERSTEN S,STIENSTRA R.The role and regulation of the peroxisome proliferator activated receptor alpha in human liver[J].Biochimie,2017,136:75.
参考文献 17
PAWLAK M,LEFEBVRE P,STAELS B.Molecular mechanism of PPARα action and its impact on lipid metabolism,inflammation and fibrosis in non-alcoholic fatty liver disease[J].Journal of Hepatology,2015,62(3):720.
参考文献 18
苏坤霞.不同强度耐力运动影响高脂诱导肥胖模型小鼠血清Irisin含量、骨骼肌PGC-1α、FNDC5、PPARδ蛋白的表达[J].中国组织工程研究,2019,23(3):427.
参考文献 19
MUOZ V R,GASPAR R C,KUGA G K,et al.Exercise decreases CLK2 in the liver of obese mice and prevents hepatic fat accumulation[J].Journal of Cellular Biochemistry,2018,119(7):5885.
参考文献 20
KWAK M S,KIM D.Non-alcoholic fatty liver disease and lifestyle modifications,focusing on physical activity[J].The Korean Journal of Internal Medicine,2018,33(1):64.
参考文献 21
MELO L,BILICI M,HAGAR A,et al.The effect of endurance training on non-alcoholic fatty liver disease in mice[J].Physiological Reports,2021,9(15):e14926.
参考文献 22
KEATING S E,HACKETT D A,PARKER H M,et al.Effect of aerobic exercise training dose on liver fat and visceral adiposity[J].Journal of Hepatology,2015,63(1):174.
参考文献 23
LOOMBA R,CORTEZ-PINTO H.Exercise and improvement of NAFLD:practical recommendations[J].Journal of Hepatology,2015,63(1):10.
参考文献 24
GAO Y,ZHANG W,ZENG L Q,et al.Exercise and dietary intervention ameliorate high-fat diet-induced NAFLD and liver aging by inducing lipophagy[J].Redox Biology,2020,36:101635.
参考文献 25
Van Der WINDT D J,SUD V,ZHANG H J,et al.The effects of physical exercise on fatty liver disease[J].Gene Expression,2018,18(2):89.
参考文献 26
MAGKOS F.Exercise and fat accumulation in the human liver[J].Current Opinion in Lipidology,2010,21(6):507.
参考文献 27
HAASE T N,RINGHOLM S,LEICK L,et al.Role of PGC-1α in exercise and fasting-induced adaptations in mouse liver[J].American Journal of Physiology.Regulatory,Integrative and Comparative Physiology,2011,301(5):R1501.
参考文献 28
MATIELLO R,FUKUI R T,SILVA M E,et al.Differential regulation of PGC-1α expression in rat liver and skeletal muscle in response to voluntary running[J].Nutrition & Metabolism,2010,7(1):36.
参考文献 29
HEINECKE F,MAZZUCCO M B,FORNES D,et al.The offspring from rats fed a fatty diet display impairments in the activation of liver peroxisome proliferator activated receptor alpha and features of fatty liver disease[J].Molecular and Cellular Endocrinology,2020,511:110818.
参考文献 30
LEE H,AHN J,SHIN S S,et al.Ascorbic acid inhibits visceral obesity and nonalcoholic fatty liver disease by activating peroxisome proliferator-activated receptor α in high-fat-diet-fed C57BL/6J mice[J].International Journal of Obesity,2019,43(8):1620.
参考文献 31
BATATINHA H A P,LIMA E A,TEIXEIRA A A S,et al.Association between aerobic exercise and rosiglitazone avoided the NAFLD and liver inflammation exacerbated in PPAR-α knockout mice[J].Journal of Cellular Physiology,2017,232(5):1008.
参考文献 32
DINIZ T A,De LIMA JUNIOR E A,TEIXEIRA A A,et al.Aerobic training improves NAFLD markers and insulin resistance through AMPK-PPAR-α signaling in obese mice[J].Life Sciences,2021,266:118868.
参考文献 33
OH K S,KIM M,LEE J,et al.Liver PPARα and UCP2 are involved in the regulation of obesity and lipid metabolism by swim training in genetically obese db/db mice[J].Biochemical and Biophysical Research Communications,2006,345(3):1232.
目录contents

    摘要

    目的:研究高强度耐力运动对食源性肥胖小鼠肝脏蛋白 CLK2、PGC-1α和 PPARα的影响。方法:雄性4周龄 C57BL/6J小鼠,先常规饲料适应性喂养1周,再通过8周高脂饲料喂养建立食源性肥胖小鼠模型,对照小鼠使用常规饲料喂养。肥胖小鼠经1周适应性跑台运动后进行高强度耐力跑台运动,对照小鼠不进行运动训练。运动训练进行8周后获取各组小鼠肝脏并称量肝脏质量;取部分肝脏组织进行 HE 染色,观察肝脏细胞形态,剩余肝脏组织通过 WesternBlot方法检测 CLK2、 PGC-1α和 PPARα的表达情况并进行组间比较。结果:①食源性肥胖小鼠肝脏质量明显增加,肝细胞正常形态受到破坏;②高脂诱导能明显增加肝脏 CLK2和 PGC-1α表达,明显减少 PPARα表达; ③高强度耐力运动能有效减轻肥胖小鼠肝脏质量并恢复肝细胞正常形态;④高强度耐力运动能明显减少肥胖小鼠肝脏 CLK2和 PGC-1α表达,明显增加 PPARα表达。结论:高强度耐力运动能够明显减少肝脏的脂质积累,改善肝脏脂质代谢情况。

    Abstract

    Objective: The purpose of this article is to study the effects of high-intensity endurance exercise on liver protein CLK2, PGC-1α and PPARα in food-induced obese mice. Methods: Male 4-week-old C57BL / 6J mice were adaptively fed with conventional diet for 1 week, and then fed with high-fat diet for 8 weeks to establish a diet-induced obesity mice model. The control mice were fed with conventional diet.The obese mice were subjected to high-intensity endurance treadmill exercise after 1 week of adaptive treadmill exercise, while the control mice did not undergo exercise training. After 8 weeks of exercise training, the livers of mice in each group were obtained and weighed. Some liver tissues were taken for HE staining to observe the morphology of liver cells. The expression of CLK2, PGC-1α and PPARα in the remaining liver tissues was detected by Western Blot and compared between groups. Results: ①The liver mass of food-induced obese mice was significantly increased, and the normal morphology of hepatocytes was destroyed. ②High-fat diet could significantly increase the expression of CLK2 and PGC-1α in the liver, and significantly reduce the expression of PPARα. ③High-intensity endurance exercise can effectively reduce the liver weight of obese mice and restore the normal morphology of liver cells. ④High-intensity endurance exercise can significantly reduce the expression of CLK2 and PGC-1α in the liver of obese mice, and significantly increase the expression of PPARα. Conclusions: High-intensity endurance exercise can significantly reduce the accumulation of lipid and improve the lipid metabolism in the liver.

  • 0 引言

  • 随着现代社会经济发展和生活水平不断提高,人们形成了久坐及缺乏有效体育锻炼等生活工作方式,体重超标甚至肥胖的人群数量及比例日益增加,造成部分人肝脏脂肪堆积和非酒精性脂肪肝病的发生,并且可能与肥胖症、2型糖尿病及其他代谢类疾病(如心血管疾病等)直接相关,严重影响人体健康[1-2]

  • 影响肝脏脂质代谢的蛋白有很多,其中 Cdc2 激酶(Cdc2-like kinase,CLK2)是一种功能比较保守的激酶蛋白,与许多重要的细胞过程相关[3-4]。CLK2通过整合一些比较重要的下丘脑途径,可以影响脂质积累和血糖水平,可能是肥胖和糖尿病治疗的新靶标分子[5]。CLK2在饮食诱导的肥胖时期能够抑制脂肪酸氧化和酮体的产生,在正常小鼠或者瘦小鼠中,肝脏的 CLK2在禁食期间表达量很低,进食后迅速增加; 在饮食诱导的肥胖小鼠肝脏中,无论禁食还是进食,CLK2 均能够保持较高的表达水平,而 CLK2磷酸化则直接导致影响脂肪酸氧化和生酮过程的 PGC-1α 活化受到抑制,表明 CLK2是体内调节脂肪酸代谢的重要蛋白,同时证明抑制肝脏的 CLK2可能是治疗肝脏代谢疾病尤其是脂肪肝等疾病的有效办法[6]。还有研究发现,CLK2是一种胰岛素调节的肝糖异生和葡萄糖输出的抑制因子,也是通过CLK2磷酸化PGC-1α抑制糖异生基因的表达和肝葡萄糖的输出,表明 CLK2是肝脏胰岛素信号调节和葡萄糖代谢的重要调节蛋白[7]

  • 过氧化物酶体增殖活化受体γ辅助活化因子 1α(peroxisome proliferators-activated receptor-γcoactivator-1,PGC-1α)是线粒体生物发生和糖异生的主要调节剂[8],是过氧化物酶体增殖物激活受体 γ(PPARγ)的共激活因子[9]。PGC1α是多个细胞过程的分子开关,包括线粒体生物合成和呼吸、糖异生和葡萄糖转运、糖原分解、脂肪酸氧化、过氧化物酶体重塑、肌纤维类型转换和氧化磷酸化等[10]。PGC-1α可以调节进食到禁食过程中肝脏中发生的大部分代谢变化,包括糖异生、脂肪酸氧化、生酮和血红素生物合成等[11]。研究发现 PGC-1α在肝脏中的作用似乎是有害的,能诱导肝葡萄糖产生并抑制胰岛素分泌从而引发糖尿病[12-13]。CLK2与 PGC-1α之间具有比较直接的联系,CLK2可以通过磷酸化 PGC-1α的SR 区域,从而直接影响 PGC-1α介导胰岛素反应的功能[14],并且 CLK2磷酸化在减弱 PGC-1α对糖异生的作用时并不会对线粒体基因产生影响[15]

  • 过氧化物酶体增殖物激活受体 α(peroxi-some proliferator-activated receptorα,PPARα)是一种配体激活的转录因子,在肝脏中大量表达。其可被脂肪酸、其他类脂质和过氧化物酶体增殖剂等激活,参与肌肉、心脏和肝脏等高氧化率组织的脂肪酸代谢[16-17]。在小鼠中,PPARα 是禁食期间肝脏脂质代谢的主要调节剂,PPARα激活可以与其他类型如PPARβ/δ激活相结合,改善非酒精性脂肪肝的脂肪变性[17]

  • 科学的体育运动已被广泛认为可以有效对抗肝脏脂肪堆积,而运动产生效果的机制还有待进一步研究。因此,该研究通过饮食诱导获得营养过剩的肥胖小鼠,模拟因高能量食物摄入造成的人体肝脏脂质超标; 然后通过8周高强度的耐力跑台运动模拟各类人群,尤其是运动员等进行的高强度体育锻炼,最后对小鼠的肝脏重量、肝细胞形态及肝脏 CLK2、PGC-1α、PPARα的表达变化进行检测和对比,进一步了解高强度耐力运动对肝脏脂质代谢的影响。

  • 1 材料和方法

  • 1.1 设计

  • 设置分组对照动物实验。

  • 1.2 时间及地点

  • 实验时间:2019年10月至2021年4月。

  • 实验地点:河南师范大学运动人体科学骨骼肌实验室。

  • 1.3 材料

  • 实验动物:实验小鼠均购自北京维通利华实验动物技术有限公司,公司经营实验动物许可证号为:SCXK(京)2016-0006。实验小鼠品系: C57BL/6J; 周龄:4 周; 性别: 雄性; 级别: SPF级; 体重:13~15g; 数量:40 只。饲养及运动地点:河南师范大学科研实验中心小动物房。饲养条件:10只/笼,食物和饮水充足,室温设置为25±1℃,相对湿度保持在 50±5%,日光灯作为模拟白天的光源,照射时间为12小时,日光灯关闭12小时模拟黑夜,交替进行。

  • 高脂诱导饲料及普通饲料购自于北京华阜康生物科技股份有限公司。饲料配方见表1。

  • 表1 高脂诱导饲料及普通饲料配方

  • 试剂:CLK2抗体(Abcam),PGC-1α抗体(Abcam),PPARα 抗体(Abcam),β-Actin 抗体(Abcam)。

  • 1.4 实验方法

  • 1.4.1 肥胖小鼠模型构建

  • 40只小鼠以常规饲料适应性喂养 1 周后,随机分成2组,其中对照组10只,该组小鼠始终喂养常规饲料; 另外30只改喂高脂诱导饲料 8周,根据体重,符合高脂诱导组小鼠体重≥对照组小鼠平均体重×120%的小鼠视为肥胖小鼠。为避免肥胖抵抗小鼠的出现,进一步选取其中体重较大的20只作为构建成功的肥胖小鼠。后续的运动实验过程中,对照组喂养常规饲料,肥胖模型组和高强度耐力运动组喂养高脂饲料。

  • 1.4.2 实验分组

  • 将20只肥胖小鼠按照体重大小排序,然后进行 S型分组,分为2组,每组10只,分别作为肥胖模型组和高强度耐力运动组。

  • 1.4.3 高强度耐力运动方案

  • 小鼠运动模式:跑台运动。

  • 器械:跑台,型号 ZH-PT,安徽正华生物仪器设备有限公司。

  • 运动方案:高强度耐力运动组小鼠先进行1 周适应性跑台运动,5 m/min,60 min/次,跑台坡度为0°,3次/周; 后改为高强度耐力运动,强度与之前研究相同[18],先以 5 m/min 运动 10min,后以18m/min运动50min,跑台坡度为0°,5次/周,共8周。对照组和肥胖模型组不运动。

  • 1.4.4 取材

  • 运动实验结束后,小鼠经腹腔注射2%戊巴比妥钠(2.5mL/kg)麻醉后脱颈处死,打开腹腔取出肝脏组织,生理盐水冲洗肝脏并除去残余生理盐水后称量湿重,手术刀切取部分肝脏组织用于组织学 HE 染色,取少量组织用于蛋白检测,其余组织冻存于-80℃冰箱备用。

  • 1.4.5 肝脏组织学切片、形态观察

  • 取小鼠肝脏组织,经石蜡包埋后切片(厚度 6μm),然后进行苏木素-伊红(HE)染色,染色后通过倒置显微镜观察并拍照。石蜡切片机: 上海名元实业有限公司,型号 SYD-2010; 倒置显微镜及照相系统: Olympus 公司,型号 CKX53。

  • 1.4.6 WesternBlot检测肝脏组织蛋白表达

  • 称取适量小鼠肝脏组织,按照质量/裂解液=1g/mL的比例加入4℃预冷的组织裂解液,于冰上用玻璃研磨器匀浆研磨,吸取所有匀浆液,经4℃、12000g高速离心 10min,小心吸取中间层细胞浆,用 BCA 法测定蛋白含量后选用10%的SDS-PAGE分离胶进行电泳分离蛋白,电转仪蛋白至硝酸纤维素膜,将膜放入含 3%脱脂奶粉的 TBST(封闭缓冲液)中室温封闭1h。封闭结束后,用封闭缓冲液稀释一抗,稀释比例为 CLK2,1 ∶ 2 000; PGC-1α,1∶4000; PPARα,1∶2 000; β-Actin,1∶ 4000,将膜放入一抗中4℃孵育过夜,然后用 TBST 洗膜3次,每次10min; 用封闭缓冲液稀释辣根过氧化物酶标记的二抗(中杉金侨公司),稀释比例为1∶5000,将膜放入二抗,室温孵育 2h后 TBST 洗3次,每次10min。将膜用ECL 超敏发光液发光,X射线胶片曝光发光条带后显影、定影。扫描胶片条带,并用IPP6.0软件获取目的条带光密度值,将目的条带与对应的 βActin条带光密度值进行比较,计算目的条带的相对含量值。

  • 1.5 主要指标

  • 观察各组小鼠肝脏质量及肝脏细胞形态,以及肝脏组织中CLK2、PGC-1α和PPARα表达含量的差别。

  • 1.6 统计学分析

  • 结果数据分析采用商业 SPSS15.0 软件进行。数据值以x-±s形式表示。对照组、肥胖模型组、高强度耐力运动组间比较采用t检验分析,p<0.05表示有显著差异,p<0.01表示有非常显著差异。

  • 2 结果

  • 2.1 实验动物数量分析

  • 40只雄性 C57BL/6J小鼠,共分 3 组,其中对照组 10 只,实验过程无脱失,全部进入结果分析; 剩余30只用于制备肥胖模型小鼠,制备时10只体重较小的舍去,剩余20只分为 2组,分别为肥胖模型组和高强度耐力运动组,每组10 只,实验过程无脱失,全部进入结果分析。

  • 2.2 各组小鼠肝脏质量和体质量比较

  • 表2 各组小鼠肝脏质量和体质量比较

  • 注:与对照组相比,a为p<0.01,b为p<0.05,ns为无显著性差异; 与肥胖模型组相比,c为p<0.05,d为p<0.01。

  • 表2结果显示,肥胖模型组小鼠肝脏质量和体质量均明显大于对照组(p<0.01),高强度耐力运动组小鼠肝脏质量和体质量均明显小于肥胖模型组(p<0.05,p<0.01),表明高强度耐力运动对减小肥胖小鼠的肝脏质量和体质量均具有明显的作用。

  • 2.3 各组肝脏组织形态学

  • 图1为各组小鼠肝脏组织细胞 HE 染色结果,对照组小鼠肝脏细胞以中央静脉为中心,向四周辐射排列,细胞大小比较均一,无明显间隙; 肥胖模型组小鼠肝脏的中央静脉不完整,四周细胞排列较混乱,并且出现较多、较大的细胞空隙,疑似脂肪细胞; 高强度耐力运动组肝脏细胞表现情况与对照组类似,中央静脉完整,细胞排列有序,大小较一致,无明显间隙。

  • 图1 各组小鼠肝脏细胞形态学比较

  • 2.4 各组小鼠肝脏组织中 CLK2的表达

  • 图2结果显示,肥胖模型组小鼠肝脏组织中 CLK2表达明显高于对照组小鼠(p<0.01),高强度耐力运动组明显低于肥胖模型组(p<0.05)。

  • 图2 各组小鼠肝脏组织中 CLK2表达情况

  • 2.5 各组小鼠肝脏组织中 PGC-1α的表达

  • 图3结果显示,肥胖模型组小鼠肝脏组织中 PGC-1α表达明显高于对照组小鼠(p<0.01),高强度耐力运动组明显低于肥胖模型组(p<0.05)。

  • 2.6 各组小鼠肝脏组织中 PPARα的表达

  • 图4结果显示,肥胖模型组小鼠肝脏组织中 PPARα表达明显低于对照组小鼠(p<0.01),高强度耐力运动组明显高于肥胖模型组(p<0.01)。

  • 图3 各组小鼠肝脏组织中 PGC-1α的表达情况

  • 图4 各组小鼠肝脏组织中 PPARα的表达情况

  • 3 讨论

  • 参照之前的方法[18],本研究继续以高脂诱导肥胖小鼠为模型动物,研究高强度耐力运动对肝脏脂质代谢相关蛋白表达量的影响,以探索高强度运动锻炼对肝脏脂质积累的影响及机制。

  • 3.1 高强度耐力运动对肥胖小鼠肝脏质量及肝脏组织细胞的影响

  • 肝脏影响着机体许多的生理过程,其能够氧化脂质物质,也可以将多余的脂质分泌到脂肪组织等部位进行存储[1]。现代人类由于脂质类物质的大量摄取,损害了肝脏对脂肪氧化和脂质积累的控制,导致肝脏脂肪堆积,严重的可能引起非酒精性脂肪肝病[19]。科学的体育锻炼是对抗肝脏脂肪堆积和脂质代谢紊乱的有效办法[20-21]。研究发现,几乎所有的有氧运动对减少肝脏的脂肪堆积均有效果[22],因为没有直接批准用于治疗非酒精性脂肪肝病的药物,因此运动也被认为是除了控制饮食之外最有效的办法[23-26]

  • 本研究发现,高脂诱导的肥胖小鼠肝脏质量明显大于对照小鼠,肝脏组织学染色也发现,肝脏的中央静脉不再完整,使肝细胞失去了围绕其辐射向外排列的结构,并且细胞间出现了较大空隙,疑似苏木精和伊红不能染色的脂肪细胞。肥胖小鼠经过8周高强度的跑台耐力运动训练后,肝脏的重量明显降低,组织学形态也几乎完全得到了修复。这些结果进一步证明了高强度耐力运动对肥胖小鼠肝脏的脂质堆积产生了正向的调控作用,减轻了脂质代谢的紊乱。

  • 3.2 高强度耐力运动对肥胖小鼠肝脏 CLK2和 PGC-1α表达的影响

  • CLK2和 PGC-1α的功能是相辅相成的,研究发现 CLK2通过磷酸化 PGC-1α的 SR 区域直接影响 PGC-1α介导的胰岛素反应[14],CLK2磷酸化也影响 PGC-1α介导的脂肪酸氧化和生酮过程[6],还可减弱 PGC-1α对糖异生的作用但不影响线粒体基因功能[15]。研究发现,Swiss小鼠经过8周+8周的高脂饮食诱导后,肥胖小鼠出现了胰岛素抵抗、肝脏CLK2增加和肝脏脂肪堆积增加的情况; 保持高脂食物不变,进行8周的慢性运动,能够阻止肝脏中CLK2的增加并减弱肝脏脂肪堆积[19]。其运动模式为慢性体育锻炼,与运动员经常进行的高强度运动锻炼不同,因此有必要研究长期高强度的体育锻炼对高脂饮食诱导的肥胖动物肝脏 CLK2的影响。关于 PGC-1α 的研究发现,PGC-1α响应单次运动和长时间运动训练,在调节肝脏细胞色素c和细胞色素氧化酶亚基I的表达过程中起关键作用,表明运动训练诱导的肝脏氧化能力改善受 PGC-1α调节[27]; 2月龄雄性 Wistar大鼠经过5周的自主跑轮运动后,其血浆胰岛素和游离脂肪酸降低,足底的 PGC-1α比不运动的大鼠明显增加,但是在比目鱼肌和肝脏组织中没有发现 PGC-1α发生变化,结果认为是自主的运动训练选择性上调了高氧化率快速骨骼肌(跖肌)中的 PGC-1α表达,表明 PGC-1α可能在运动介导的胰岛素抵抗改善和降低循环游离脂肪酸水平方面发挥了积极作用[28],该研究结果发现自主的跑轮运动并没有对肝脏 PGC-1α的表达产生明显影响。

  • 本研究发现,肥胖小鼠肝脏 CLK2和 PGC1α表达均明显高于对照小鼠,与 Munoz [19]的研究结果类似,表明肥胖可能引发不同品系的小鼠出现肝脏 CLK2和 PGC-1α表达增加。肥胖小鼠经过高强度耐力运动后,肝脏 CLK2和 PGC-1α 表达均明显下降,显示高强度的耐力运动模式与慢性体育锻炼一样,也能够引起肝脏脂质堆积的减少和脂类代谢的改善。以上结果表明,运动不分模式,均对肝脏具有保护作用。

  • 3.3 高强度耐力运动对肥胖小鼠肝脏 PPARα 表达的影响

  • 关于肝脏中 PPARα的研究发现,人肝中的 PPARα能够有效诱导多种脂质代谢相关基因的表达,包括过氧化物酶体和线粒体脂肪酸氧化、脂肪酸结合和活化、脂肪酸延伸和去饱和、甘油三酯合成和分解、脂蛋白代谢、糖异生等,PPARα激动剂除纠正血脂异常外,还可能是非酒精性脂肪肝病和 2 型糖尿病的治疗方法[16]。研究发现,脂肪诱导的雌性肥胖大鼠生产的后代容易罹患脂肪肝,这种易感性可能与 PPARα的功能障碍有关[29]; 抗坏血酸能够通过激活 PPARα抑制高脂饮食诱导的内脏肥胖和非酒精性脂肪肝病[30]; 高脂饮食可诱导肝脏甘油三酯增加,导致小鼠发生非酒精性脂肪肝病,而运动可以通过 PPARα 逆转肝病指标,如果缺乏 PPARα或者缺乏运动则会导致 PPARγ减少和巨大的炎症反应[31]; 有氧训练可以通过 AMPK-PPARα信号传导和 PPARγ激活来减轻肝脏大泡性脂肪变性和炎症,从而改善肥胖小鼠的胰岛素抵抗[32],认为有氧训练是有效改善肝脏脂肪变性的非药物办法。其他运动模式如游泳训练也是经典的有氧运动,有研究发现6周的游泳训练显著增加了肝脏中 PPARα的 mRNA 水平,表明游泳训练能够有效预防小鼠肥胖和脂质代谢紊乱[33]

  • 本研究发现高脂诱导肥胖小鼠肝脏中 PPARα表达明显降低,表明肥胖小鼠肝脏脂肪具有累积的趋势。肥胖小鼠经高强度耐力运动后,肝脏 PPARα表达明显升高,表明肝脏的脂肪积累在迅速减少。

  • 4 结论与不足

  • 本研究提示高强度耐力运动能明显减少肝脏内的脂质积累并明显改变肝脏脂质代谢相关蛋白 CLK2、PGC-1α和 PPARα的表达情况。实验设计中仅分析了CLK2、PGC-1α和PPARα的表达水平,未能对其上下游其他蛋白的表达水平进行检测; 因条件限制未能对肝脏组织细胞进行油红 O 染色确定脂质堆积情况。今后将进行完善。

  • 致谢:感谢李建龙教授以及运动人体科学专业的梁芝栋同学对本实验的指导和技术支持。

  • 作者贡献:由第一作者进行实验的设计、实施及评价。

  • 利益冲突声明:文章作者声明,在课题研究和文章撰写过程,没有因其岗位角色影响文章观点和对数据结果的报道,不存在利益冲突。

  • 伦理问题说明:实验方案经河南师范大学动物实验伦理委员会批准。实验过程遵循了国际兽医学编辑协会 《关于动物伦理与福利的作者指南共识》和本地及国家法规。实验动物在麻醉下进行所有的手术,并尽一切努力最大限度地减少其痛苦和死亡。文章的撰写与编辑修改后文章遵守了 《动物实验体内实验研究报告规范指南》(ARRIVE指南)。

  • 参考文献

    • [1] TREFTS E,GANNON M,WASSERMAN D H.The liver[J].Current Biology,2017,27(21):R1147.

    • [2] CHRISTENSEN S.Recognizing obesity as a disease[J].Journal of the American Association of Nurse Practitioners,2020,32(7):497.

    • [3] JIANG N,BÉNARD C Y,KÉBIR H,et al.Human CLK2 links cell cycle progression,apoptosis,and telomere length regulation[J].The Journal of Biological Chemistry,2003,278(24):21678.

    • [4] HATTING M,RINES A K,LUO C,et al.Adipose tissue CLK2 promotes energy expenditure during high-fat diet intermittent fasting[J].Cell Metabolism,2017,25(2):428.

    • [5] QUARESMA P G F,WEISSMANN L,ZANOTTO T M,et al.Cdc2-like kinase 2 in the hypothalamus is necessary to maintain energy homeostasis[J].International Journal of Obesity,2017,41(2):268.

    • [6] TABATA M,RODGERS J T,HALL J A,et al.Cdc2-like kinase 2 suppresses hepatic fatty acid oxidation and ketogenesis through disruption of the PGC-1α and Med1 complex[J].Diabetes,2014,63(5):1519.

    • [7] RODGERS J T,HAAS W,GYGI S P,et al.Cdc2-like kinase 2 is an insulin-regulated suppressor of hepatic gluconeogenesis[J].Cell Metabolism,2010,11(1):23.

    • [8] RODGERS J T,LERIN C,GERHART-HINES Z,et al.Metabolic adaptations through the PGC-1α and SIRT1 pathways[J].FEBS Letters,2008,582(1):46.

    • [9] PUIGSERVER P,WU Z,PARK C W,et al.A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis[J].Cell,1998,92(6):829.

    • [10] CORONA J C,DUCHEN M R.PPARγ and PGC-1α as therapeutic targets in Parkinson’s[J].Neurochemical Research,2015,40(2):308.

    • [11] HANDSCHIN C.The biology of PGC-1α and its therapeutic potential[J].Trends in Pharmacological Sciences,2009,30(6):322.

    • [12] BESSEICHE A,RIVELINE J P,GAUTIER J F,et al.Metabolic roles of PGC-1α and its implications for type 2 diabetes[J].Diabetes & Metabolism,2015,41(5):347.

    • [13] WU H J,DENG X N,SHI Y H,et al.PGC-1α,glucose metabolism and type 2 diabetes mellitus[J].The Journal of Endocrinology,2016,229(3):R99.

    • [14] LI X H,MONKS B,GE Q Y,et al.Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1α transcription coactivator[J].Nature,2007,447(7147):1012.

    • [15] CANTÓ C,AUWERX J.Clking on PGC-1α to inhibit gluconeogenesis[J].Cell Metabolism,2010,11(1):6.

    • [16] KERSTEN S,STIENSTRA R.The role and regulation of the peroxisome proliferator activated receptor alpha in human liver[J].Biochimie,2017,136:75.

    • [17] PAWLAK M,LEFEBVRE P,STAELS B.Molecular mechanism of PPARα action and its impact on lipid metabolism,inflammation and fibrosis in non-alcoholic fatty liver disease[J].Journal of Hepatology,2015,62(3):720.

    • [18] 苏坤霞.不同强度耐力运动影响高脂诱导肥胖模型小鼠血清Irisin含量、骨骼肌PGC-1α、FNDC5、PPARδ蛋白的表达[J].中国组织工程研究,2019,23(3):427.

    • [19] MUOZ V R,GASPAR R C,KUGA G K,et al.Exercise decreases CLK2 in the liver of obese mice and prevents hepatic fat accumulation[J].Journal of Cellular Biochemistry,2018,119(7):5885.

    • [20] KWAK M S,KIM D.Non-alcoholic fatty liver disease and lifestyle modifications,focusing on physical activity[J].The Korean Journal of Internal Medicine,2018,33(1):64.

    • [21] MELO L,BILICI M,HAGAR A,et al.The effect of endurance training on non-alcoholic fatty liver disease in mice[J].Physiological Reports,2021,9(15):e14926.

    • [22] KEATING S E,HACKETT D A,PARKER H M,et al.Effect of aerobic exercise training dose on liver fat and visceral adiposity[J].Journal of Hepatology,2015,63(1):174.

    • [23] LOOMBA R,CORTEZ-PINTO H.Exercise and improvement of NAFLD:practical recommendations[J].Journal of Hepatology,2015,63(1):10.

    • [24] GAO Y,ZHANG W,ZENG L Q,et al.Exercise and dietary intervention ameliorate high-fat diet-induced NAFLD and liver aging by inducing lipophagy[J].Redox Biology,2020,36:101635.

    • [25] Van Der WINDT D J,SUD V,ZHANG H J,et al.The effects of physical exercise on fatty liver disease[J].Gene Expression,2018,18(2):89.

    • [26] MAGKOS F.Exercise and fat accumulation in the human liver[J].Current Opinion in Lipidology,2010,21(6):507.

    • [27] HAASE T N,RINGHOLM S,LEICK L,et al.Role of PGC-1α in exercise and fasting-induced adaptations in mouse liver[J].American Journal of Physiology.Regulatory,Integrative and Comparative Physiology,2011,301(5):R1501.

    • [28] MATIELLO R,FUKUI R T,SILVA M E,et al.Differential regulation of PGC-1α expression in rat liver and skeletal muscle in response to voluntary running[J].Nutrition & Metabolism,2010,7(1):36.

    • [29] HEINECKE F,MAZZUCCO M B,FORNES D,et al.The offspring from rats fed a fatty diet display impairments in the activation of liver peroxisome proliferator activated receptor alpha and features of fatty liver disease[J].Molecular and Cellular Endocrinology,2020,511:110818.

    • [30] LEE H,AHN J,SHIN S S,et al.Ascorbic acid inhibits visceral obesity and nonalcoholic fatty liver disease by activating peroxisome proliferator-activated receptor α in high-fat-diet-fed C57BL/6J mice[J].International Journal of Obesity,2019,43(8):1620.

    • [31] BATATINHA H A P,LIMA E A,TEIXEIRA A A S,et al.Association between aerobic exercise and rosiglitazone avoided the NAFLD and liver inflammation exacerbated in PPAR-α knockout mice[J].Journal of Cellular Physiology,2017,232(5):1008.

    • [32] DINIZ T A,De LIMA JUNIOR E A,TEIXEIRA A A,et al.Aerobic training improves NAFLD markers and insulin resistance through AMPK-PPAR-α signaling in obese mice[J].Life Sciences,2021,266:118868.

    • [33] OH K S,KIM M,LEE J,et al.Liver PPARα and UCP2 are involved in the regulation of obesity and lipid metabolism by swim training in genetically obese db/db mice[J].Biochemical and Biophysical Research Communications,2006,345(3):1232.

  • 参考文献

    • [1] TREFTS E,GANNON M,WASSERMAN D H.The liver[J].Current Biology,2017,27(21):R1147.

    • [2] CHRISTENSEN S.Recognizing obesity as a disease[J].Journal of the American Association of Nurse Practitioners,2020,32(7):497.

    • [3] JIANG N,BÉNARD C Y,KÉBIR H,et al.Human CLK2 links cell cycle progression,apoptosis,and telomere length regulation[J].The Journal of Biological Chemistry,2003,278(24):21678.

    • [4] HATTING M,RINES A K,LUO C,et al.Adipose tissue CLK2 promotes energy expenditure during high-fat diet intermittent fasting[J].Cell Metabolism,2017,25(2):428.

    • [5] QUARESMA P G F,WEISSMANN L,ZANOTTO T M,et al.Cdc2-like kinase 2 in the hypothalamus is necessary to maintain energy homeostasis[J].International Journal of Obesity,2017,41(2):268.

    • [6] TABATA M,RODGERS J T,HALL J A,et al.Cdc2-like kinase 2 suppresses hepatic fatty acid oxidation and ketogenesis through disruption of the PGC-1α and Med1 complex[J].Diabetes,2014,63(5):1519.

    • [7] RODGERS J T,HAAS W,GYGI S P,et al.Cdc2-like kinase 2 is an insulin-regulated suppressor of hepatic gluconeogenesis[J].Cell Metabolism,2010,11(1):23.

    • [8] RODGERS J T,LERIN C,GERHART-HINES Z,et al.Metabolic adaptations through the PGC-1α and SIRT1 pathways[J].FEBS Letters,2008,582(1):46.

    • [9] PUIGSERVER P,WU Z,PARK C W,et al.A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis[J].Cell,1998,92(6):829.

    • [10] CORONA J C,DUCHEN M R.PPARγ and PGC-1α as therapeutic targets in Parkinson’s[J].Neurochemical Research,2015,40(2):308.

    • [11] HANDSCHIN C.The biology of PGC-1α and its therapeutic potential[J].Trends in Pharmacological Sciences,2009,30(6):322.

    • [12] BESSEICHE A,RIVELINE J P,GAUTIER J F,et al.Metabolic roles of PGC-1α and its implications for type 2 diabetes[J].Diabetes & Metabolism,2015,41(5):347.

    • [13] WU H J,DENG X N,SHI Y H,et al.PGC-1α,glucose metabolism and type 2 diabetes mellitus[J].The Journal of Endocrinology,2016,229(3):R99.

    • [14] LI X H,MONKS B,GE Q Y,et al.Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1α transcription coactivator[J].Nature,2007,447(7147):1012.

    • [15] CANTÓ C,AUWERX J.Clking on PGC-1α to inhibit gluconeogenesis[J].Cell Metabolism,2010,11(1):6.

    • [16] KERSTEN S,STIENSTRA R.The role and regulation of the peroxisome proliferator activated receptor alpha in human liver[J].Biochimie,2017,136:75.

    • [17] PAWLAK M,LEFEBVRE P,STAELS B.Molecular mechanism of PPARα action and its impact on lipid metabolism,inflammation and fibrosis in non-alcoholic fatty liver disease[J].Journal of Hepatology,2015,62(3):720.

    • [18] 苏坤霞.不同强度耐力运动影响高脂诱导肥胖模型小鼠血清Irisin含量、骨骼肌PGC-1α、FNDC5、PPARδ蛋白的表达[J].中国组织工程研究,2019,23(3):427.

    • [19] MUOZ V R,GASPAR R C,KUGA G K,et al.Exercise decreases CLK2 in the liver of obese mice and prevents hepatic fat accumulation[J].Journal of Cellular Biochemistry,2018,119(7):5885.

    • [20] KWAK M S,KIM D.Non-alcoholic fatty liver disease and lifestyle modifications,focusing on physical activity[J].The Korean Journal of Internal Medicine,2018,33(1):64.

    • [21] MELO L,BILICI M,HAGAR A,et al.The effect of endurance training on non-alcoholic fatty liver disease in mice[J].Physiological Reports,2021,9(15):e14926.

    • [22] KEATING S E,HACKETT D A,PARKER H M,et al.Effect of aerobic exercise training dose on liver fat and visceral adiposity[J].Journal of Hepatology,2015,63(1):174.

    • [23] LOOMBA R,CORTEZ-PINTO H.Exercise and improvement of NAFLD:practical recommendations[J].Journal of Hepatology,2015,63(1):10.

    • [24] GAO Y,ZHANG W,ZENG L Q,et al.Exercise and dietary intervention ameliorate high-fat diet-induced NAFLD and liver aging by inducing lipophagy[J].Redox Biology,2020,36:101635.

    • [25] Van Der WINDT D J,SUD V,ZHANG H J,et al.The effects of physical exercise on fatty liver disease[J].Gene Expression,2018,18(2):89.

    • [26] MAGKOS F.Exercise and fat accumulation in the human liver[J].Current Opinion in Lipidology,2010,21(6):507.

    • [27] HAASE T N,RINGHOLM S,LEICK L,et al.Role of PGC-1α in exercise and fasting-induced adaptations in mouse liver[J].American Journal of Physiology.Regulatory,Integrative and Comparative Physiology,2011,301(5):R1501.

    • [28] MATIELLO R,FUKUI R T,SILVA M E,et al.Differential regulation of PGC-1α expression in rat liver and skeletal muscle in response to voluntary running[J].Nutrition & Metabolism,2010,7(1):36.

    • [29] HEINECKE F,MAZZUCCO M B,FORNES D,et al.The offspring from rats fed a fatty diet display impairments in the activation of liver peroxisome proliferator activated receptor alpha and features of fatty liver disease[J].Molecular and Cellular Endocrinology,2020,511:110818.

    • [30] LEE H,AHN J,SHIN S S,et al.Ascorbic acid inhibits visceral obesity and nonalcoholic fatty liver disease by activating peroxisome proliferator-activated receptor α in high-fat-diet-fed C57BL/6J mice[J].International Journal of Obesity,2019,43(8):1620.

    • [31] BATATINHA H A P,LIMA E A,TEIXEIRA A A S,et al.Association between aerobic exercise and rosiglitazone avoided the NAFLD and liver inflammation exacerbated in PPAR-α knockout mice[J].Journal of Cellular Physiology,2017,232(5):1008.

    • [32] DINIZ T A,De LIMA JUNIOR E A,TEIXEIRA A A,et al.Aerobic training improves NAFLD markers and insulin resistance through AMPK-PPAR-α signaling in obese mice[J].Life Sciences,2021,266:118868.

    • [33] OH K S,KIM M,LEE J,et al.Liver PPARα and UCP2 are involved in the regulation of obesity and lipid metabolism by swim training in genetically obese db/db mice[J].Biochemical and Biophysical Research Communications,2006,345(3):1232.

  • 用微信扫一扫

    用微信扫一扫